

Series: W4YXZ

SET ~ 1

प्रश्न-पत्र कोड Q.P. Code

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code

on the title page of the answer-book.

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ **23** हैं।

Please check that this question paper contains 23 printed pages.

(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।

Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/4/1 1

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क. ख. ग. घ.** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड u प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

1. किसी वैद्युत-रासायनिक सेल में निम्नलिखित अभिक्रिया होती है :

$$\begin{split} &2Cu^{+}(aq)+Zn\left(s\right)\rightarrow2Cu\left(s\right)+Zn^{2+}(aq)\\ &E_{\overrightarrow{n}\overrightarrow{er}}^{\circ}=1\cdot28\;V \end{split}$$

जैसे-जैसे अभिक्रिया आगे बढ़ती है, सेल के समग्र विभव का क्या होगा ?

- (A) विभव स्थिर रहेगा।
- (B) $[Zn^{2+}]$ बढने पर यह घटेगा।
- (C) [Cu⁺] बढ़ने पर यह बढ़ेगा।
- (D) $[Zn^{2+}]$ बढ़ने पर यह बढ़ेगा।
- **2.** Fe³⁺, Sc³⁺, Cr³⁺ और Co³⁺ आयनों में से जलीय विलयन में कौन-सा रंगहीन है ?
 - (A) Sc^{3+}

(B) Fe^{3+}

(C) Cr^{3+}

(D) Co^{3+}

[परमाणु क्रमांक : Fe = 26, Sc = 21, Cr = 24, Co = 27]

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

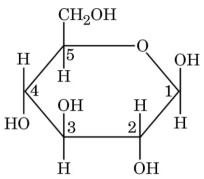
1. In an electrochemical cell, the following reaction takes place :

$$2Cu^{+}\left(aq\right)+Zn\left(s\right)\rightarrow2Cu\left(s\right)+Zn^{2+}\left(aq\right)$$

$$E_{coll}^{\circ} = 1.28 \text{ V}$$

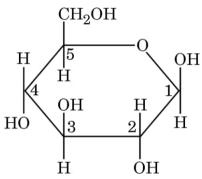
As the reaction progresses, what will happen to the overall voltage of the cell?

- (A) Voltage will remain constant.
- (B) It will decrease as $[Zn^{2+}]$ increases.
- (C) It will increase as [Cu⁺] increases.
- (D) It will increase as $[Zn^{2+}]$ increases.
- 2. Out of Fe^{3+} , Sc^{3+} , Cr^{3+} and Co^{3+} ions, the one which is colourless in aqueous solution is:
 - (A) Sc^{3+}


(B) Fe^{3+}

(C) Cr^{3+}

(D) Co³⁺


[Atomic number : Fe = 26, Sc = 21, Cr = 24, Co = 27]

- 3. हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया निम्नलिखित में से किसके द्वारा दी जाती है ?
 - (A) ArNO₂
 - (B) $ArNH_2$
 - (C) ArCONH₂
 - (D) $ArCH_2NH_2$
- 4. निम्नलिखित कार्बोहाइड्रेट की हॉवर्थ संरचना में विभिन्न कार्बन परमाणुओं को संख्यांकित किया गया है। ऐनोमरी कार्बन को किस संख्या से संख्यांकित किया गया है?

- (A) 1
- (B) 2
- (C) 3
- (D) 5
- 5. हेनरी स्थिरांक K_H का मान होता है :
 - (A) उच्चतर विलेयता वाली गैसों के लिए बृहत्तर
 - (B) निम्नतर विलेयता वाली गैसों के लिए बृहत्तर
 - (C) सभी गैसों के लिए स्थिर
 - (D) गैसों की विलेयता से संबंधित नहीं है
- **6.** निम्नलिखित कथनों में से ग़लत कथन है :
 - (A) La वास्तव में संक्रमण श्रेणी का तत्त्व है।
 - (B) लैंथेनॉयड आकुंचन के कारण Zr और Hf की लगभग समान परमाणु त्रिज्याएँ होती हैं।
 - (C) La^{3+} से Lu^{3+} आयन तक आयनिक त्रिज्या घटती है।
 - (D) लैंथेनॉयड रेडियोसक्रिय प्रकृति के होते हैं।

- **3.** Hoffmann Bromamide degradation reaction is given by :
 - (A) ArNO₂
 - (B) $ArNH_2$
 - (C) ArCONH₂
 - (D) ArCH₂NH₂
- 4. In the Haworth structure of the following carbohydrate, various carbon atoms have been numbered. The anomeric carbon is numbered as:

- (A) 1
- (B) 2
- (C) 3
- (D) 5
- **5.** The value of Henry's constant K_H is:
 - (A) greater for gases with higher solubility
 - (B) greater for gases with lower solubility
 - $(C) \qquad constant \ for \ all \ gases$
 - (D) not related to the solubility of gases
- **6.** Out of the following statements, the *incorrect* statement is :
 - (A) La is actually an element of transition series.
 - (B) Zr and Hf have almost identical atomic radii because of lanthanoid contraction.
 - (C) Ionic radius decreases from La^{3+} to Lu^{3+} ion.
 - (D) Lanthanoids are radioactive in nature.

- 7. 2-ब्रोमोब्यूटेन, 1-ब्रोमोब्यूटेन, 2-ब्रोमोप्रोपेन और 1-ब्रोमोप्रोपेन में से कौन-सा अणु किरेल प्रकृति का है ?
 - (A) 2-ब्रोमोब्यूटेन
 - (B) 1-ब्रोमोब्यूटेन
 - (C) 2-ब्रोमोप्रोपेन
 - (D) 1-ब्रोमोप्रोपेन
- 8. नीचे दी गई अभिक्रिया अनुक्रम में, Y की संरचना होगी:

$$NH_2$$
 NH_2 $NANO_2$ $X \xrightarrow{C_2H_5OH} Y$ $NANO_2$ $X \xrightarrow{C_2H_5OH} Y$

(A) OH

(B)

(C) NO_2

- (D) N_2Cl
- 9. क्षारीय माध्यम में ${
 m MnO_4^-}$ द्वारा ${
 m I^-}$ के ऑक्सीकरण का उत्पाद है :
 - $(A) IO_4^-$
 - $(\mathrm{B}) \quad \ \mathrm{I}_2$
 - (C) IO^-
 - (D) IO_3^-
- 10. पॉलिहैलोजन यौगिकों का उद्योगों और कृषि में व्यापक अनुप्रयोग है। DDT भी एक अत्यंत महत्त्वपूर्ण पॉलिहैलोजन यौगिक है। यह है एक :
 - (A) ग्रीनहाउस गैस
 - (B) उर्वरक
 - (C) जैवनिम्नीकरणीय कीटनाशी
 - (D) अजैवनिम्नीकरणीय कीटनाशी

- 7. Out of 2-Bromobutane, 1-Bromobutane, 2-Bromopropane and 1-Bromopropane, the molecule which is chiral in nature is:
 - (A) 2-Bromobutane
 - (B) 1-Bromobutane
 - (C) 2-Bromopropane
 - (D) 1-Bromopropane
- **8.** In the given reaction sequence, the structure of Y would be:

$$\underbrace{\begin{array}{c} \text{NaNO}_2 \\ \text{HCl} \\ 0-5^{\circ}\text{C} \end{array}}_{\text{(Aniline)}} \text{NaNO}_2 \times \underbrace{\begin{array}{c} \text{C}_2\text{H}_5\text{OH} \\ \text{O} - 5^{\circ}\text{C} \end{array}}_{\text{(Aniline)}} \text{Y}$$

(A) OF

(B)

(C) NO_2

- (D) $N_2^{\tau}Cl$
- **9.** The product of the oxidation of I^- with MnO_4^- in alkaline medium is :
 - $(A) IO_4^-$
 - (B) I₂
 - (C) IO⁻
 - (D) IO_3^-
- **10.** Polyhalogen compounds have wide application in industries and agriculture. DDT is also a very important polyhalogen compound. It is a :
 - (A) greenhouse gas
 - (B) fertilizer
 - (C) biodegradable insecticide
 - $(D) \quad \ non-biodegradable\ insecticide$

- 11. MnO_4^- के 1 मोल को Mn^{2+} में अपचियत करने के लिए कितने विद्युत आवेश की आवश्यकता होगी ?
 - (A) 1F

(B) 5F

(C) 4F

- (D) 6F
- **12.** ऐल्कोहॉलों को सांद्र H_0SO_4 के साथ गर्म करने पर ऐल्कीन बनती हैं। अभिक्रिया का प्रथम चरण है :
 - (A) कार्बोकैटायन का बनना
 - (B) एस्टर का बनना
 - (C) ऐल्कोहॉल अणु का प्रोटॉनीकरण
 - (D) जल का विलोपन

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या **नहीं** करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : जलीय NaCl का वैद्युत-अपघटन कैथोड पर H_2 और ऐनोड पर Cl_2 देता है। $\operatorname{ant}(R)$: $\operatorname{H}_2\operatorname{O}$ की अपेक्षा क्लोरीन का ऑक्सीकरण विभव उच्चतर होता है।
- **14.** अभिकथन (A): क्यूप्रस लवण प्रतिचुम्बकीय होते हैं।

कारण (R): क्यूप्रस आयन में पूर्ण भरित 3d-कक्षक होते हैं।

15. अभिकथन (A) : n-ब्यूटिल ब्रोमाइड की तुलना में n-ब्यूटिल क्लोराइड का क्वथनांक उच्चतर होता \overline{t} ।

कारण (R): C-Br आबंध की तुलना में C-Cl आबंध अधिक ध्रुवीय होता है।

16. अभिकथन (A) : ऐनिलीन की तुलना में ऐसीटेनिलाइड कम क्षारकीय है।

कारण (R): ऐनिलीन के ऐसीटिलीकरण के परिणामस्वरूप नाइट्रोजन पर इलेक्ट्रॉन घनत्व घटता \ddot{R} ।

11.	What amount of electric charge is required for the reduction of 1 mole of
	MnO_4^- into Mn^{2+} ?

(A) 1F

(B) 5F

(C) 4F

(D) 6F

12. Alkenes are formed by heating alcohols with conc. H₂SO₄. The first step in the reaction is:

- (A) formation of carbocation
- (B) formation of ester
- (C) protonation of alcohol molecule
- (D) elimination of water

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. Assertion (A): Electrolysis of aqueous NaCl gives H_2 at cathode and Cl_2 at anode.
 - Reason(R): Chlorine has higher oxidation potential than H_2O .
- **14.** Assertion (A): Cuprous salts are diamagnetic.

Reason(R): Cuprous ion has completely filled 3d-orbitals.

15. Assertion (A): n-Butyl chloride has higher boiling point than n-Butyl bromide.

Reason(R): C – Cl bond is more polar than C – Br bond.

16. Assertion (A): Acetanilide is less basic than aniline.

Reason (R): Acetylation of aniline results in decrease of electron density on nitrogen.

56/4/1 # 9 # P.T.O.

खण्ड ख

17. (क) किसी अभिकारक 'A' का अपघटन होता है। 'A' की सांद्रता की माप निश्चित अंतराल पर की गई जिसे नीचे दी गई सारणी में अंकित किया गया :

समय/घंटे	[A]/M
0	0.40
1	0.20
2	0.10
3	0.05

ऊपर दिए गए आँकड़ों के आधार पर, अभिक्रिया की कोटि की प्रागुक्ति कीजिए और इसके वेग नियम का व्यंजक लिखिए।

अथवा

(ख) $H_2(g)$ और $I_2(g)$ के बीच अभिक्रिया एक बन्द समतापी पात्र में की गई। अभिक्रिया के लिए वेग नियम पाया गया :

वेग =
$$k[H_2][I_2]$$

ताप को स्थिर रखते हुए यदि अभिक्रिया कोष्ठ में 1 मोल $H_2(g)$ मिलाई गई, तो अभिक्रिया वेग तथा वेग स्थिरांक में परिवर्तन की प्राग्क्ति कीजिए।

18. ${
m PtCl}_4$. ${
m 2KCl}$, ${
m AgNO}_3$ विलयन के साथ ${
m AgCl}$ का अवक्षेप नहीं देता है। संकुल का संरचनात्मक सूत्र और ${
m IUPAC}$ नाम लिखिए।

19. ईंधन सेल को परिभाषित कीजिए। साधारण सेल की तुलना में ईंधन सेल के दो लाभ दीजिए।

20. निम्नलिखित अभिक्रियाओं के मुख्य उत्पादों की संरचनाएँ लिखिए : 2

$$(\mathfrak{F}) \qquad \begin{matrix} O \\ CH_2CH_2 - C - O - CH_3 \\ || \\ O \end{matrix} \qquad \begin{matrix} NaBH_4 \\ \\ O \end{matrix}$$

(평)
$$\begin{array}{c} \operatorname{CH}_3 \\ \mid \\ \operatorname{CH}_3 - \operatorname{C} - \operatorname{OH} + 2\operatorname{Al} \longrightarrow \\ \mid \\ \operatorname{CH}_3 \end{array}$$

21. आवश्यक ऐमीनो अम्लों से क्या अभिप्राय है ? ऐमीनो अम्ल उभयधर्मी प्रकृति के क्यों होते हैं ?

2

2

2

2

SECTION B

17. (a) Reactant 'A' underwent a decomposition reaction. The concentration of 'A' was measured periodically and recorded in the table given below :

Time/Hours	[A]/M
0	0.40
1	0.20
2	0.10
3	0.05

Based on the above data, predict the order of the reaction and write the expression for the rate law.

 \mathbf{OR}

(b) The reaction between $H_2(g)$ and $I_2(g)$ was carried out in a sealed isothermal container. The rate law for the reaction was found to be:

Rate =
$$k[H_2][I_2]$$

If 1 mole of $H_2(g)$ was added to the reaction chamber and the temperature was kept constant, then predict the change in rate of the reaction and the rate constant.

- 18. $PtCl_4$. 2KCl doesn't give precipitate of AgCl with AgNO $_3$ solution. Write the structural formula and IUPAC name of the complex.
- **19.** Define fuel cell. Give two advantages of fuel cell over ordinary cell.
- **20.** Write the structures of the main products of the following reactions:

(a)
$$CH_2CH_2 - C - O - CH_3 \xrightarrow{NaBH_4}$$

(b)
$$6CH_3 - C - OH + 2Al \longrightarrow CH_3$$

21. What is meant by essential amino acids? Why are amino acids amphoteric in nature?

2

2

2

THE PARTY
2 P. 2 2 2
JE 24377
SECULIA S
==::::::::::::::::::::::::::::::::::::

खण्ड ग

22. (क) निम्नलिखित के लिए कारण दीजिए:

3

3

- (i) n-प्रोपिल क्लोराइड की तुलना में ऐलिल क्लोराइड अधिक तीव्रता से जल-अपघटित होता है।
- (ii) ऐिंक्कल हैलाइडों को जब सिल्वर सायनाइड के साथ अभिक्रियित किया जाता है तब आइसोसायनाइड बनते हैं।
- (iii) $S_N 2$ अभिक्रिया में t-ब्यूटिल क्लोराइड की तुलना में मेथिल क्लोराइड $\overline{O}H$ आयन के साथ अधिक शीघृता से अभिक्रिया करता है।

अथवा

(ख) 'A' और 'B' के संरचनात्मक सूत्र लिखकर निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :

(i) $CH_3CH = CH_2 \xrightarrow{\text{HBr}} \text{ 'A'} \xrightarrow{\text{जलीय KOH}} \text{ 'B'}$

(ii)
$$CH_3CH_2CHCH_3 \xrightarrow{\quad \text{ऐल्कोहॉलिक KOH} \quad \Delta}$$
 'A' $\xrightarrow{\quad HBr \quad }$ 'B' $\quad Cl$

(iii) 'A'
$$\xrightarrow{\mbox{Mg}}$$
 $\mbox{CH}_3\mbox{CH}_2\mbox{MgCl} \xrightarrow{\mbox{H}_2\mbox{O}}$ 'B' (मुख्य उत्पाद)

23. 25°C पर निम्नलिखित अर्ध-सेलों को जोड़कर बने वोल्टीय सेल का सेल विभव परिकलित कीजिए :

Al/Al³⁺ (0·001 M) तथा Ni/Ni²⁺ (0·1 M)

दिया गया है :
$$E_{N_i^{2+}/N_i}^0 = -0.25 \text{ V}, \quad E_{Al^{3+}/Al}^0 = -1.66 \text{ V}$$

24. निम्नलिखित प्रत्येक प्रेक्षण के लिए स्पष्टीकरण दीजिए :

3

- (क) ${
 m Mn^{3+}}$ आयन ऑक्सीकारक है जबिक ${
 m Cr^{2+}}$ आयन अपचायक है यद्यपि दोनों का ${
 m d}$ -कक्षक विन्यास (${
 m d^4}$) एक समान है।
- (ख) लैंथेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है।
- (ग) H, B, C और N के साथ संक्रमण धातुएँ बहुत अधिक संख्या में अंतराकाशी यौगिक बनाते हैं।

SECTION C

22. (a) Account for the following:

3

3

- (i) Allyl chloride is hydrolysed more readily than n-propyl chloride.
- (ii) Isocyanides are formed when alkyl halides are treated with silver cyanide.
- (iii) Methyl chloride reacts faster with $\bar{\rm OH}$ ion in $\rm S_N 2$ reaction than t-butyl chloride.

OR

(b) Complete the following reactions by writing the structural formulae of 'A' and 'B':

(i) $CH_3CH = CH_2 \xrightarrow{Peroxide} 'A' \xrightarrow{aq. KOH} 'B'$

(ii)
$$CH_3CH_2CHCH_3 \xrightarrow{alc. KOH} `A' \xrightarrow{HBr} `B'$$

$$Cl$$

 $\text{(iii)} \quad \text{`A'} \xrightarrow{\quad \text{Mg} \quad} \text{CH}_3 \text{CH}_2 \text{MgCl} \xrightarrow{\quad \text{H}_2 \text{O} \quad} \text{`B'} \\ \text{(Main product)}$

23. Calculate the cell voltage of the voltaic cell which is set up by joining following half-cells at 25°C:

 Al/Al^{3+} (0.001 M) and Ni/Ni^{2+} (0.1 M)

Given:
$$E_{N_i^{2+}/N_i}^0 = -0.25 \text{ V}, \quad E_{Al^{3+}/Al}^0 = -1.66 \text{ V}$$

24. Give explanation for each of the following observations :

3

- (a) With the same d-orbital configuration (d^4), Mn^{3+} ion is an oxidising agent whereas Cr^{2+} ion is a reducing agent.
- (b) Actinoid contraction is greater from element to element than that among lanthanoids.
- (c) Transition metals form large number of interstitial compounds with H, B, C and N.

25. NaOH का एक जलीय विलयन बनाया गया और परासरण दाब की माप से $27^{\circ}\mathrm{C}$ पर इसका मोलर द्रव्यमान $25~\mathrm{g~mol^{-1}}$ पाया गया । इस विलयन में NaOH का प्रतिशत वियोजन परिकलित कीजिए।

3

[परमाणु द्रव्यमान : Na = 23 u, O = 16 u, H = 1 u]

26. पूछे गए अनुसार निम्नलिखित यौगिकों को व्यवस्थित कीजिए :

3

- (क) $C_2H_5NH_2$, $(C_2H_5)_2NH$, $C_6H_5NHCH_3$, $C_6H_5NH_2$ pK_b मानों के घटते हुए क्रम में
- (ख) ${
 m C_2H_5OH, C_2H_5NH_2, (CH_3)_2NH}$ क्वथनांक के बढ़ते हुए क्रम में
- (ग) ${
 m C_6H_5NH_2,\,(C_2H_5)_2NH,\,C_2H_5NH_2}$ जल में विलेयता के बढ़ते हए क्रम में
- **27.** C_8H_8O आण्विक सूत्र वाला कोई ऐरोमैटिक यौगिक 'A' धनात्मक 2,4-DNP परीक्षण देता है। यह सोडियम हाइपोआयोडाइट के साथ अभिक्रियित किए जाने पर यौगिक 'B' का पीला अवक्षेप देता है। यौगिक 'A' टॉलेन अथवा फेलिंग अभिकर्मक के साथ अभिक्रिया नहीं करता है; $KMnO_4$ के साथ प्रबल ऑक्सीकरण पर यह कार्बोक्सिलिक अम्ल 'C' बनाता है। 'A', 'B' और 'C' की संरचनाएँ स्पष्ट कीजिए। उनके IUPAC नाम भी दीजिए।

3

28. (क) क्या तृतीयक-ब्यूटिल एथिल ईथर बनाने के लिए सोडियम एथॉक्साइड और तृतीयक-ब्यूटिल क्लोराइड का उपयोग किया जा सकता है ? उचित व्याख्या दीजिए । तृतीयक-ब्यूटिल एथिल ईथर बनाने के लिए आवश्यक उपयुक्त प्रारम्भिक पदार्थों का सुझाव देते हुए अपने उत्तर का औचित्य दीजिए।

2

(ख) ऊपर उल्लिखित ईथर का IUPAC नाम दीजिए।

25. An aqueous solution of NaOH was made and its molar mass from the measurement of osmotic pressure at 27°C was found to be 25 g mol⁻¹. Calculate the percentage dissociation of NaOH in this solution.

3

[Atomic mass : Na = 23 u, O = 16 u, H = 1 u]

26. Arrange the following compounds as asked :

3

- (a) in decreasing order of pK_b values $C_2H_5NH_2, (C_2H_5)_2NH, C_6H_5NHCH_3, C_6H_5NH_2$
- (b) increasing order of boiling point ${\rm C_2H_5OH,\,C_2H_5NH_2,\,(CH_3)_2NH}$
- (c) increasing order of solubility in water $C_6H_5NH_2$, $(C_2H_5)_2NH$, $C_2H_5NH_2$
- 27. An aromatic compound 'A' with molecular formula C₈H₈O gives positive 2,4-DNP test. It gives yellow precipitate. of compound 'B' on treatment with sodium hypoiodite. Compound 'A' does not react with Tollen's or Fehling's reagent; on drastic oxidation with KMnO₄ it forms a carboxylic acid 'C'. Elucidate the structures of A, B and C. Also give their IUPAC names.

3

28. (a) Can sodium ethoxide and t-butyl chloride be used for the preparation of t-butyl ethyl ether? Give suitable explanation.

Justify your answer by suggesting the appropriate starting material required for preparation of t-butyl ethyl ether.

2

(b) Give the IUPAC name of above mentioned ether.

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. आदर्श विलयन की सामान्यत: स्वीकृत परिभाषा के अनुसार उसी अथवा भिन्न स्पीशीज़ के अणुओं के मध्य समान अन्योन्यक्रिया बल कार्य करते हैं। (यह कथन तुल्य है कि घटकों की सिक्रयता उनकी सांद्रता के बराबर होती है।) सच पूछिए तो यह शर्त मिश्रणों (ध्रुवण समावयव, तत्त्व के समस्थानिक मिश्रणों, हाइड्रोकार्बन मिश्रणों) के लिए केवल अपवादात्मक प्रकरणों में ही पूरी होती है। आदर्श विलयनों के विषय में सीमित प्रकरणों में ही चर्चा की जा सकती है क्योंकि विलायक के संदर्भ में अत्यंत तनु विलयन ही आदर्शत: व्यवहार करते हैं। इस दृष्टिकोण को इस तथ्य से और भी समर्थन मिला कि राउल्ट नियम ने तनु विलयनों में विलायक के व्यवहार का वर्णन करने के लिए आनुभविक रूप से ज्ञात किया तथा पूर्वधारणा के माध्यम से ऊष्मागितकी द्वारा विलायक के आदर्श व्यवहार को निगमित किया जा सकता है।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(क) मिश्रणीय द्रव युगल का एक उदाहरण दीजिए जो राउल्ट नियम से ऋणात्मक विचलन दर्शाता है। इस विचलन का क्या कारण है?

2

1

1

1

2

1

1

(ख) (i) वाष्पशील अवयवों वाले विलयन के लिए राउल्ट नियम बताइए।

अथवा

- (ख) (ii) राउल्ट का नियम हेनरी के नियम की एक विशेष स्थिति है। टिप्पणी कीजिए।
- (ग) आदर्श विलयन के दो लक्षण लिखिए।

30. राइबोस और 2-डिऑक्सीराइबोस की जीव विज्ञान में महत्त्वपूर्ण भूमिका है। उनके सबसे महत्त्वपूर्ण व्युत्पन्न वे हैं जिनमें फ़ॉस्फ़ेट समूह 5-स्थिति से बँधता है। मोनो-, डाई- और ट्राइ-फ़ॉस्फ़ेट रूप तथा 3-5 चक्रीय मोनोफ़ॉस्फ़ेट महत्त्वपूर्ण हैं। प्यूरीन और पिरिमिडीन, राइबोस तथा डिऑक्सीराइबोस के साथ यौगिकों का एक मुख्य वर्ग बनाते हैं। जब ये प्यूरीन और पिरिमिडीन व्युत्पन्न राइबोस शर्करा के साथ युग्मन करते हैं, तो ये न्यूक्लियोसाइड कहलाते हैं।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (क) जब DNA को जल-अपघटित किया जाता है तो क्या उत्पाद बनेंगे ? संरचना के संदर्भ में DNA किस प्रकार RNA से भिन्न है ?
- (ख) न्यूक्लियोटाइड और न्यूक्लियोसाइड में अंतर स्पष्ट कीजिए।
- (ग) (i) न्यूक्लीक अम्ल के दो महत्त्वपूर्ण प्रकार्यों का उल्लेख कीजिए। 1

अथवा

(ग) (ii) दो न्यूक्लियोटाइडों को जोड़ने वाले बंध का नाम बताइए। उस क्षारक का नाम लिखिए जो RNA के न्यूक्लियोटाइड में पाया जाता है लेकिन DNA में नहीं।

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

- 29. According to the generally accepted definition of the ideal solution there are equal interaction forces acting between molecules belonging to the same or different species. (This is equivalent to the statement that the activity of the components equals the concentration.) Strictly speaking, this condition is fulfilled only in exceptional cases for mixtures (optical isomers, isotopic mixtures of an element, hydrocarbon mixtures). It is still usual to talk about ideal solutions as limiting cases in reality since very dilute solutions behave ideally with respect to the solvent. This view is further supported by the fact that Raoult's law empirically found for describing the behaviour of the solvent in dilute solutions can be deduced thermodynamically via the assumption of ideal behaviour of the solvent. Answer the following questions:
 - (a) Give one example of miscible liquid pair which shows negative deviation from Raoult's law. What is the reason for such deviation?

2

1

1

1

2

1

1

1

(b) (i) State Raoult's law for a solution containing volatile components.

OR

- (b) (ii) Raoult's law is a special case of Henry's law. Comment.
- (c) Write two characteristics of an ideal solution.

30. Ribose and 2-deoxyribose have an important role in biology. Among the most important derivatives are those with phosphate groups attached at the 5 position. Mono-, di- and tri-phosphate forms are important, as well as 3-5 cyclic monophosphates. Purines and pyrimidines form an important class of compounds with ribose and deoxyribose. When these purine and pyrimidine derivatives are coupled to a ribose sugar, they are called nucleosides.

Answer the following questions:

- (a) What products would be formed when DNA is hydrolysed? How is DNA different from RNA with reference to a structure?
- (b) Differentiate between nucleotide and nucleoside.
- (c) (i) Mention two important functions of nucleic acid.

\mathbf{OR}

(c) (ii) Name the linkage which joins two nucleotides. Name the base that is found in nucleotide of RNA but not in DNA.

खण्ड ङ

31. (क) (i) मुख्य उत्पादों की संरचना लिखकर निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :

(I)
$$\longrightarrow$$
 O $\xrightarrow{\text{H}_2\text{NCONH} - \text{NH}_2}$

1

(II)
$$(CH_3)_2Cd + 2CH_3COCl \longrightarrow$$

1

(III)
$$\longrightarrow$$
 COCl $\xrightarrow{\text{H}_2}$ $\xrightarrow{\text{Pd} - \text{BaSO}_4}$

1

(ii) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए:

(I) एथिल बेन्ज़ोएट और बेन्ज़ोइक अम्ल

1

1

(II) प्रोपेनैल और प्रोपेनोन

अथवा

(ख) (i) निम्नलिखित प्रत्येक संश्लेषण में छूटे हुए प्रारंभिक पदार्थ, अभिकर्मक अथवा उत्पादों को लिखकर पूर्ण कीजिए :

$$(I) \qquad \overbrace{\hspace{1cm}}^{CH_2CH_3} \xrightarrow{(i) \text{ KMnO}_4, \text{ KOH}} ?$$

1

(II)
$$\leftarrow$$
 CH₂ $\xrightarrow{?}$ CHO

1

(III)
$$O$$

$$CHO \xrightarrow{[Ag(NH_3)_2]^+} ?$$

1

(ii) निम्नलिखित रूपान्तरण सम्पन्न कीजिए :

(I) बेन्ज़ैल्डिहाइड से बेन्ज़ोफीनोन

1

(II) बेन्ज़ैल्डिहाइड से 3-फेनिल प्रोपेनॉल

SECTION E

31. (a) (i) Complete the following reactions by writing the structure of the main products:

(I)
$$\longrightarrow$$
 O $\xrightarrow{\text{H}_2\text{NCONH} - \text{NH}_2}$

1

(II)
$$(CH_3)_2Cd + 2CH_3COC1 \longrightarrow$$

1

(III)
$$\longrightarrow$$
 $\xrightarrow{\text{COCl}}$ $\xrightarrow{\text{H}_2}$ $\xrightarrow{\text{Pd} - \text{BaSO}_4}$

1

- (ii) Give simple chemical test to distinguish between the following pairs of compounds:
 - (I) Ethyl benzoate and benzoic acid

1

(II) Propanal and propanone

1

OR.

(b) (i) Complete each synthesis by giving missing starting material, reagent or products:

(I)
$$CH_2CH_3 \xrightarrow{(i) \text{ KMnO}_4, \text{ KOH}} ?$$

1

(II)
$$CH_2 \xrightarrow{?} CHC$$

1

(III)
$$O$$

$$CHO \xrightarrow{[Ag(NH_3)_2]^+} ?$$

1

- (ii) Carry out the following conversions:
 - (I) Benzaldehyde to Benzophenone

1

(II) Benzaldehyde to 3-phenyl propanol

कारण दीजिए: (i) 32. (क) $[Ni(CO)_4]$ प्रतिचुम्बकीय है जबिक $[NiCl_4]^{2-}$ अनुचुम्बकीय है । (I)[परमाण् क्रमांक : Ni = 28] 1 NH3 की तुलना में CO एक प्रबल संकुलन कर्मक है। (II)1 संकुल [Co(en)2Cl2] + का विपक्ष समावयव ध्रवण अधूर्णक है। (III)1 क्रिस्टल क्षेत्र सिद्धांत का उपयोग करते हुए Fe³⁺ के अष्टफलकीय संकुलों में (ii) निम्नलिखित की उपस्थिति में अयुगलित इलेक्ट्रॉनों की संख्या लिखिए : 2 प्रबल क्षेत्र लिगन्ड (I)दुर्बल क्षेत्र लिगन्ड (II)[परमाणु क्रमांक : Fe = 26] अथवा निम्नलिखित यौगिकों द्वारा प्रदर्शित समावयवता के प्रकार का नाम लिखिए। उनके (ख) (i) संगत समावयवों का चित्र भी बनाइए। (I) $[Co(NH_3)_6]$ $[Cr(CN)_6]$ 1 $[\mathrm{Co(en)_3}]^{3+}$ (II)1 $[Co(NH_3)_3(NO_2)_3]$ (III)1 दुर्बल क्षेत्र और प्रबल क्षेत्र लिगन्डों के बीच अन्तर स्पष्ट कीजिए। लिगन्ड की (ii) 2

प्रबलता किस प्रकार संकुल के प्रचक्रण को प्रभावित करती है ?

प्रथम कोटि की अभिक्रिया: 33. (i) (क)

$$\mathrm{N_2O_5}\left(\mathrm{g}\right) \to 2\mathrm{NO_2}\left(\mathrm{g}\right) + \frac{1}{2}\,\mathrm{O_2}\left(\mathrm{g}\right)$$

के लिए $m N_2O_5$ की प्रारंभिक सांद्रता $m 1\cdot2 imes10^{-2}~mol~L^{-1}$ थी। m 60 मिनट के पश्चात $m N_2O_5$ की सांद्रता $0.2 imes 10^{-2}~mol~L^{-1}$ थी। 318~K पर अभिक्रिया का वेग स्थिरांक परिकलित कीजिए।

$$[\log 6 = 0.778]$$

32 .	(a)	(i)	Give reasons
5Z.	(A)	(1)	THIVE REASONS

- (I) $[Ni(CO)_4]$ is diamagnetic whereas $[NiCl_4]^{2-}$ is paramagnetic. [Atomic number : Ni = 28]
- (II) CO is a stronger complexing agent than NH₃.
- (III) The trans isomer of complex [Co(en)₂Cl₂]⁺ is optically inactive.
- (ii) Using Crystal Field theory, write the number of unpaired electrons in octahedral complexes of Fe³⁺ in the presence of:
 - (I) Strong field ligand
 - (II) Weak field ligand

[Atomic number : Fe = 26]

OR

- (b) (i) Name the type of isomerism exhibited by the following compounds. Also draw their corresponding isomers.
 - (I) $[Co(NH_3)_6][Cr(CN)_6]$

1

1

2

1

1

1

2

- (II) $[\text{Co(en)}_3]^{3+}$
- (III) $[Co(NH_3)_3(NO_2)_3]$ 1
- (ii) Differentiate between weak field and strong field ligands. How does the strength of the ligand influence the spin of the complex?
- **33.** (a) (i) The initial concentration of N_2O_5 in the first order reaction :

$$N_2O_5(g) \to 2NO_2(g) + \frac{1}{2}O_2(g)$$

was 1.2×10^{-2} mol L^{-1} . The concentration of N_2O_5 after 60 minutes was 0.2×10^{-2} mol L^{-1} . Calculate the rate constant of the reaction at 318 K.

 $[\log 6 = 0.778]$

- (ii) निम्नलिखित के लिए कारण दीजिए :
 - (I) हम संतुलित रासायनिक समीकरण के आधार पर किसी अभिक्रिया की कोटि ज्ञात नहीं कर सकते।

1

(II) कोई द्वि-अणुक अभिक्रिया विशिष्ट परिस्थित में गतिकत: प्रथम कोटि की हो सकती है।

1

अथवा

- (ख) (i) 298 K से परम ताप में 10 K की वृद्धि के साथ किसी रासायनिक अभिक्रिया का वेग दुगुना हो जाता है। सि्क्रियण ऊर्जा (E_a) की गणना कीजिए। 3 [$2\cdot303 \text{ R} = 19\cdot15 \text{ JK}^{-1} \text{ mol}^{-1}, \log 2 = 0\cdot3$]
 - (ii) अभिक्रिया

$$2\mathrm{H}_2\mathrm{O}_2 \xrightarrow{\hspace*{1em}\mathsf{I}^-\hspace*{1em}} 2\mathrm{H}_2\mathrm{O} + \mathrm{O}_2$$

के लिए प्रस्तावित क्रियाविधि निम्न प्रकार है:

- (I) $H_2O_2 + I^- \longrightarrow H_2O + IO^-$ (मन्द)
- (II) $H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$ (तीव्र)
 - (1) अभिक्रिया के लिए वेग नियम लिखिए।
 - (2) अभिक्रिया की समग्र कोटि एवं आण्विकता लिखिए।

- (ii) Account for the following:
 - (I) We cannot determine the order of a reaction by taking into consideration the balanced chemical equation.
 - (II) A bimolecular reaction may become kinetically of first order under a specified condition.

OR

(b) (i) The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate activation energy (E_a).

$$[2.303 \text{ R} = 19.15 \text{ JK}^{-1} \text{ mol}^{-1}, \log 2 = 0.3]$$

(ii) For a reaction:

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

the proposed mechanism is as given below:

(I)
$$H_2O_2 + I^- \longrightarrow H_2O + IO^-$$
 (slow)

- (II) $H_2O_2 + IO^- \longrightarrow H_2O + I^- + O_2$ (fast)
 - (1) Write rate law for the reaction.
 - (2) Write the overall order and molecularity of the reaction.

2

1

1

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024-25 SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/4/1) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

QP CODE 56/4/1 MM: 70

Q.No	Value points	Mark
	SECTION A	
1	(B)	1
2	(A)	1
3	(C)	1
4	(A)	1
5	(B)	1
6	(D)	1
7	(A)	1
8	(B)	1
9	(D)	1
10	(D)	1
11	(B)	1
12	(C)	1
13	(C)	1
14	(A)	1
15	(D)	1
16	(A)	1
	SECTION B	
17	Order of the reaction =1 / First	1
	Rate =k[A]	1
	OR	
17	Rate of the reaction will increase.	1
	Rate constant remains same.	1
18	Structural formula: K ₂ [PtCl ₆]	1
	IUPAC Name: Potassium hexachloridoplatinate(IV)	1
19	Galvanic cell which converts the energy of combustion of fuels directly into electrical	1
	energy.	
	Advantages 1.High efficiency	½ x2=1
	2.Pollution free (or any other two correct advantages)	
20	(a) $CH_2CH_2 - C - O - CH_3$	1
	(1-)	
	(b)	_
	CH-C-OA	1
	CH ₃ / ₃	
21	Andrea and which councils a mathematical in the back and most be obtained to the	1
21	 Amino-acids which cannot be synthesized in the body and must be obtained through 	1
	diet.	1
	In zwitter ionic form, amino-acids react both with acids and bases./ Due to the presence of both carbonylis group and amino group.	1
	of both carboxylic group and amino group.	+
22/21	SECTION C (i) Greater stability of allylic carbocation due to resonance.	1
22(a)	(ii) Being covalent in nature, only nitrogen is free to donate electron pair in AgCN.	1 1
	(iii)Less sterically hindered carbon in Methyl chloride/ greater steric hinderance on tertiary	1
	carbon of t-butyl chloride.	1
	OR	1
22(b)	(i) $A = CH_3CH_2CH_2Br$ $B = CH_3CH_2CH_2OH$	½ X
ZZ(D)	(ii) $A = CH_3CH_2CH_2B$ $B = CH_3CH_2CH_2CH$ (ii) $A = CH_3CH=CHCH_3$ $B = CH_3CH_2CH(Br)CH_3$	6=3
L	(11) A - CH3CH-CHCH3 D- CH3CH2CH(DI)CH3	0-3

	(iii)A = CH_3CH_2CI B= CH_3CH_3	
23	$2AI + 3 Ni^{2+} \rightarrow 2AI^{3+} + 3Ni$	1/2
23		1/2
	$E^{\circ} cell = E^{\circ}_{Ni}^{2+}_{/Ni} - E^{\circ}_{Al}^{3+}_{/Al}$; $E^{\circ} cell = -0.25 - (-1.66) = 1.41V$	/2
	n=6	
	$E_{cell} = E^{\circ}_{cell} - \frac{2.303RT}{1.000000000000000000000000000000000000$	
	nF [Ni ²⁺] ³	
	$E_{\text{cell}} = 1.41 - \frac{0.059}{6} \log \frac{[0.001]^2}{6}$	4
	6 [0.1] ³	1
	$E_{cell} = 1.41 - \frac{0.059}{0.05} \log \frac{[10]^{-6}}{0.05}$	
	6 [10] ⁻³	
	$E_{\text{cell}} = 1.41 - \frac{0.059}{6} \log 10^{-3}$	
	6	
	E _{cell} =1.41-(-0.0295)	
	E _{cell} =1.41+0.0295	
	E _{cell} =1.439V/1.44V (Deduct ½ mark for no or incorrect unit)	1
24	(a)Change from Mn ³⁺ to Mn ²⁺ results in extra stable half filled d ⁵ configuration.	1/2
	Cr ²⁺ is reducing as its configuration changes from d ⁴ to d ³ which is stable half filled t _{2g} ³	1/
	configuration.	1/2
	(b) Due to poorer shielding offered by 5f electrons than 4f.	1
	(c)H, B, C and N atoms being small in size get trapped inside the crystal lattices of	1
	transition metals.	41
25	i=Normal molar mass/Abnormal molar mass	1/2
	i=40/25	
	=1.6	1
	α = i-1/n-1	1/2
	= <u>1.6-1</u>	
	1	
	=0.6 x100	
	=60% (Any other suitable method)	1
26.	$(a)C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$	1
	(b) (CH ₃) ₂ NH< C ₂ H ₅ NH ₂ <c<sub>2H₅OH</c<sub>	1
	(c) $C_6H_5NH_2<(C_2H_5)_2NH< C_2H_5NH_2$	1
27	A: C ₆ H ₅ COCH ₃ Acetophenone	1/2,1/2
	B: CHI ₃ Triiodomethane	1/2, 1/2
	C: C ₆ H ₅ COOH Benzoic acid	1/2, 1/2
28	(a)No	1/2
	Sodium ethoxide is a strong nucleophile as well as a strong base so elimination reaction of t-	1/2
	butyl chloride predominates over substitution.	
	Chloroothana and Sod tart hutavida / C H Cl and (CH) CONa	1/2 + 1/2
	Chloroethane and Sod.tert-butoxide / C₂H₅Cl and (CH₃)₃CONa	/2 + /2
	(b)2-Ethoxy-2-methylpropane	1
		1
29	(a)Chloroform and Acetone (or Any other correct example)	1
23	A-B interactions are stronger than A-A and B-B interaction.	1
	(b)(i) For any solution the partial vapour pressure of each volatile component is directly	1
		1
	proportional to its mole fraction. OR	
	(b)(ii) $p = p^0 x_{-}, p = K_{\rm H} x$	1
	When $p^0 = K_H$	1
	$p \propto \chi$ for both.	
	(c) The enthalpy of mixing of the pure components in the ideal solution is $Zero/\Delta_{mix}H=0$.	1/ . 1/
	The Volume of mixing of the pure components in the ideal solution is Zero. Δ_{mix} V=0	1/2 + 1/2
	(or any other two suitable characteristics)	

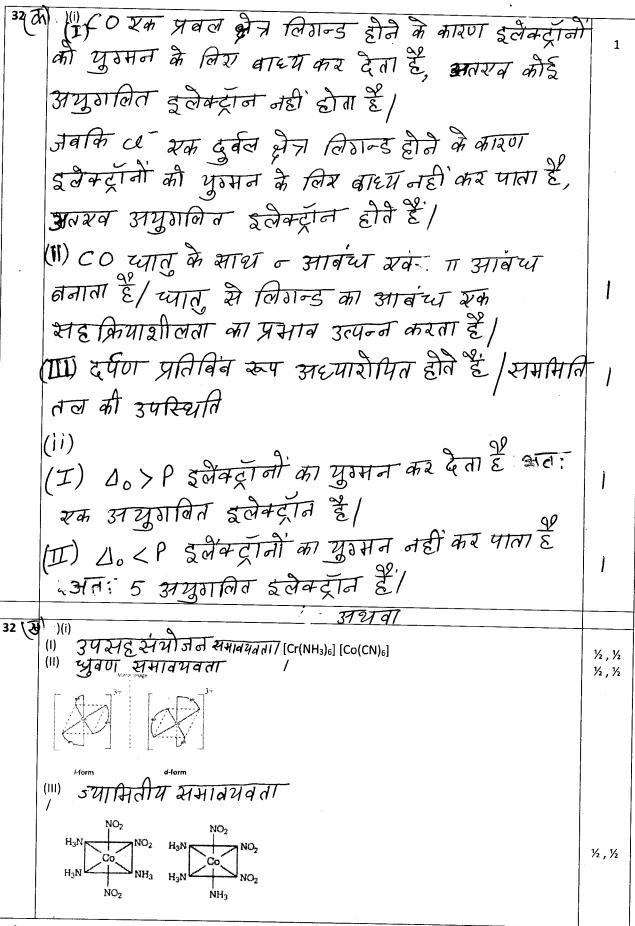
30	(a)2-Deoxyribose, Phosphoric acid, Nitrogeno	us base.	1
	DNA	RNA	
	1.Double stranded helix	Single stranded helix	1
		or any other suitable structural difference)	
	(b)		
	Nucleotide	Nucleoside	_
	1.Pentose sugar+ Nitrogenous base +	1.Pentose sugar+ Nitrogenous base	1
	Phosphate		
	(c)	n synthosis	
	(i) To preserve genetic information and Protei O		1
	(c)(ii)Phosphodiester linkage	N.	
	Uracil		1/2 + 1/2
		CTION E	
31	(a)(i) (I)		
			1
	NNHCONH ₂		
	(II) CH₃COCH₃		
			1
	CHO		
	(III)		1
	(m) (n) -		1
	(ii) (I)Benzoic acid with Sodium bicarbonate gi	ves brisk effervescence. No reaction with	1
	Ethyl benzoate	olution of cilvor nitrato (Tallons' roagant)	1
	(ii)Propanal, when heated with ammoniacal so gives silver mirror. No reaction with propanor		
	gives sliver militor. No reaction with propanor	(or any other suitable chemical test)	
		OR	
31	(b)(i)(l)		
	СООН		1
	(II)1.(BH ₃) ₂ , 2.H ₂ O ₂ /OH ⁻ , 3.PCC		1
	(III)		
	0		1
			1
	COO		
	(b)(ii)		
	(1)		
1	0	0	
	CHO (i)KaCraOr	II .	1
	(i)K2Cr2O7 CI C6H6	→ (~~ ^c ~~)	1
	CHO (i)K2Cr2O7 CI C6H6 (ii) SOCl2 Anhyd .AlCl3	→ O ^c O	
	(ii) SOCI2 CI Anhyd .AICI3	→ CH=CHCHO H ₂ /Ni C ₆ H ₅ CH ₂ CH ₂ CH ₂ OH	1
	(ii) SOCI2 CI Anhyd .AICI3	$ \begin{array}{ccc} & & & \\ & & & \\ &$	
	(ii) SOCI2 CI Anhyd .AICI3	\rightarrow C ₆ H ₅ CH ₂ CH ₂ CH ₂ OH (Or any other suitable method)	
	(ii) SOCI2 CI Anhyd .AICI3	·	
32	(ii) SOCI2 CI Anhyd .AICI3	·	
32	(II) C_6H_5CHO CH ₃ CHO, dil NaOH, Δ C ₆ H ₉	(Or any other suitable method)	
32	$(II) C_6H_5CHO \qquad CH_3CHO, dil NaOH, \Delta \qquad C_6H_5CHO$ $(a)(i)$	(Or any other suitable method)	1

	Whereas Cl ⁻ is a weak field ligand, does not cause pairing, therefore presence of unpaired electrons.	
	(II) CO can form both sigma (σ) and pi (π)bond with central metal atom/Metal to ligand bonding creates synergic effect between CO and the Metal.	1
	(III) Mirror images are superimposable/ Presence of plane of symmetry.	1
	(ii) (I) Δ_0 >P, causes pairing of electrons, therefore 1 unpaired electron (II) Δ_0 <p, 5="" electrons="" electrons<="" no="" of="" pairing="" th="" therefore="" unpaired=""><th>1 1</th></p,>	1 1
	OR	
32	(b)(i) (I)Coordination Isomerism / [Cr(NH ₃) ₆] [Co(CN) ₆] (II)Optical Isomerism /	½,½ ½,½
	I-form d-form	
	(III)Geometrical isomerism /	
	NO ₂ NO ₂	
	H_3N Co NO_2 H_3N NO_2 NO_2 NO_2	1/2 , 1/2
	NO ₂ NH ₃	
	(ii) Weak field ligands produce weak field and leads to small splitting of d-orbitals whereas strong field ligands produce strong field leading to large splitting of d-orbitals.	1
	Strong field ligands cause pairing of electrons/a smaller number of unpaired electrons hence produces low spin complexes and weak field ligands causes no pairing of electrons/ a greater number of unpaired electrons hence produces high spin complexes.	1
33	(a)	
	(i) 2:303 . [R]	1
	$k = \frac{2 \cdot 303}{t} \log \frac{[R]_0}{[R]}$	1
	$k = \frac{2 \cdot 303}{60} \log \frac{1.2 \times 10^{-2}}{0.2 \times 10^{-2}}$	1
	= ^{2·303} log 6	
	$= \frac{2 \cdot 303}{60} \log 6$ $= \frac{2 \cdot 303}{60} \times 0.778$	
	$= \frac{1}{60} \times 0.778$ k= 2.98 x 10 ⁻² min ⁻¹ / 0.0298 min ⁻¹ (Deduct ½ mark for incorrect or no unit.)	1
	(ii)	_
	(I) Order is determined experimentally.(II) If one of the reactants is taken in excess.	1 1
	OR	1
33	(b)(i)	
	$\log \frac{k_2}{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1

$\log \frac{2k_1}{k_1} = \frac{E_a}{19\cdot 15} \left[\frac{1}{298} - \frac{1}{308} \right]$	1
$0.3 = \frac{E_a}{19.15} \left[\frac{10}{298 \times 308} \right]$	
$E_a = \frac{10}{10}$ $E_a = 52729 \text{ Jmol}^{-1} \text{ or } 52.729 \text{ kJmol}^{-1}$ (Deduct ½ mark for incorrect or no unit.)	1
(ii) (1). Rate= $k[H_2O_2][I^-]$	1
(2) Overall order : 2/ Second	1/2
Molecularity : 2 / Bimolecular	1/2

अंकन योजना 2024-25 वसायन विद्यान(सिद्धान्तिक)- 043 प्रदन-पत्र कोड 56/4/1

MM :70


Q.No	स्टूल्म विद	Mark
	रेवण्य करें	Mark
1	(B)	1
2	(A)	1
3	(C)	1
4	(A)	1
5	(B)	1
6	(D)	1
7	(A)	1
8	(B)	1
9	(D)	1
10	(D)	1
11	(B)	1
12	(C)	1
13	(C)	1
14	(A)	1
15	(D)	1
16	(A)	1
	२व०५ रव	
17	अभिनिक्रिया की बीटि = 1/ प्रथम	1
	ATT 115.7	
	dot = K[A]	1
	अर्था	
17	अभिक्रिया वैश वहेगा	
	गामाश्रमा वमा बद्गा	1
	A A A A A	•
	वैग स्थिरोंक अपरिवर्तित रहेगा	1
18	Structural formula: K ₂ [PtCl ₆]	1
		1 1
	IUPAC Name: पार्टिनियम हेक्साकलेगरेडॉ एलेटिनेट (IV)	
19 A	2 21 4 9 9 0 0 0 1 2 4 4	
19 <u>A</u>	रीत्वेनी सेल जी रसायनिक उर्जा की सीपी ही विद्युत	ı
•	_	1
	उर्जी में बदल देते हैं।	
	·	
	वास 1. उटच दक्षता	
	- · · · · · · · · · · · · · · · · · · ·	1×9
	2. GCAUT HAN /200 AS 200 A . A	12 " x
	2. प्रदूषण सूचर (अधवा मोई अन्य दी सही उसकताम)	= 1
20	A OH	1
	CH ₂ CH ₂ -C-O-CH ₃	_

	/a.	
	(A) - (CH ₃ - CH ₃) CH ₃ - (CH ₃)	1
21	रीमीनी अम्ल जो शारीर में संश्लेषित नहीं हो सकते	
	हैं तथा जिनको भीजन में लेना आवश्यक हैं	
	उत्पातिकर अग्राविक रूप में रीमी में असले	
	मा गाउकी रीजी के आथ अभिमित्रिया करते हैं	
	कार्बी किसल समूह व रोमी ने समुहों की उपस्थित सक ही	
22/ \	र्वन्द्र ग्र	
(22() (271) (1)	री नि तिक कार्बी कैरा पर्न, उन्नुनाद के कारण रूपापित	1
	71-d 9271 81	
	(ii) सहस्रों जन प्रकृति हो ने के कारण AgCN	
	(11) सहस्रायामक प्रकृत	,
	में केवल माड्डोडन परमाण्य इलैक्ट्रोन पुरान प्रवान	/
	कर सकता है।	
	(11) रेकान मलोगडड के कार्बन में कम किरावन	,
	वाया होते के कारण / t- oyled क्वाराइ ड के	1
	3° कार्बन में अधियम त्रिविम बाधा हीने के कारण	
	अर्था	-
22	(i) $A = CH_3CH_2CH_2Br$ $B = CH_3CH_2CH_2OH$	1/2 X
(2)	(ii) $A = CH_3CH = CHCH_3$ $B = CH_3CH_2CH(Br)CH_3$ (iii) $A = CH_3CH_2CI$ $B = CH_3CH_3$	6=3
23	$2AI + 3 Ni^{2+} \rightarrow 2AI^{3+} + 3Ni$	1/2
	E°cell=E° _{Ni} ²⁺ / _{Ni} - E° _{Al} ³⁺ / _{Al} ; E°cell=-0.25-(-1.66)=1.41V	1/2
	n=6	
	E _{cell} =E° _{cell} -2.303RT log [Al ³⁺] ² nF [Ni ²⁺] ³	
	$E_{cell}=1.41-0.059 \log [0.001]^2$	
	6 $[0.1]^3$ $E_{cell}=1.41-0.059 \log [10]^{-6}$	1
	6 [10] ⁻³	
	E _{cell} =1.41- <u>0.059</u> log 10 ⁻³	
	6 E _{cell} =1.41-(-0.0295)	
	Ecel=1.41+0.0295 (इकाई गलत या भा देन पर 1/2 अक काट प्र	
	E _{cell} =1.439V/1.44V	1

24		
24	(क) Mn3+ के Mn2+ में परिवर्तन से अतिरिक्त स्थायी	4
	अर्धभरित व विन्यास का प्राप्त ही ना /	2
	Cor2+ राक अप-यामक है क्यों कि इसका विन्यास d 4 से	
	ते में परिवर्तित होता है जिसमें स्थापी अर्धा भारित	2
	रेश्व स्तर प्राप्त होता है	
	(क) पी की त्लम में 5 र इलेक्ट्रों में द्वारा अधियक दुर्वल	
	पर्यक्षण के कारण	
	(ग) द्वीटे आकार वाले परमाणु असे H,B,C,N अंक्रमण	,
	पातुओं ने क्रिस्टल जालक के भीतर संपाशित ही	
	जाते हैं	
25	७= सामान्य मोलर द्रव्यमान =40/25	1/2
	=1.6	1
	$\alpha = i-1/n-1$ = 1.6-1	1/2
	1 =0.6 x100	
	=60% (कोई अन्य उपयुक्त विधि)	1
26.	(4) C ₆ H ₅ NH ₂ > C ₆ H ₅ NHCH ₃ > C ₂ H ₅ NH ₂ >(C ₂ H ₅) ₂ NH (3) (CH ₃) ₂ NH< C ₂ H ₅ NH ₂ <c<sub>2H₅OH</c<sub>	1
	(5) $C_6H_5NH_2<(C_2H_5)_2NH< C_2H_5NH_2$	1
27	A: C ₆ H ₅ COCH ₃ २२२ टो फ़्रीना B: CHI ₃ द्राइआग्रोडो मेथेन	½,½ ½,½
	C: C ₆ H ₅ COOH वान्नी दुक उनम्ल	1/2, 1/2
28	(9) of ET'	土
	सो डिपम रघाँकसाइड यक प्रवल नामिकराशी स्वे प्रवल	
	भारक है अतः विवीपन, प्रतिस्थापन भी अपियक	艺
	प्रवसर होता है	
	क लोरीर थेन रवं सोडियम तृतीयक ० यूटोंक्साइड/	111
	<u> </u>	1/2
	Canscl Trit (CN3)3 CONa	1/2
	(छ) 2- अथॉक्सी-2- मीधल प्रोपेन	1
		اـــــــــــــــــــــــــــــــــــــ

	२१०५ च	T
29	का क्लीबीफार्स रवं बेसीटीन (अथवा कोई और मही उदाहरण)
	A-A व B-B के बीच अंतराआणिवक आकिषण की	
	त्लना में A-B के बीच अंतराआणिवक आर्क पण के	1
	प्रवलतर ही ने के कारण	
	(क) (i) वाठपशील द्वीं के विलयन में प्रत्येक अवयव का	
	अंशिक दाव विलयन में उसके मील अंश के समानुपाती	1
	होता है अत्यवा	
	(ii) P=POX, P=KMX	. 1
	P°= KH þxx (दी में के लिए)	
	मादर्श विलयन बनाने के लिए शुद्ध अवयवीं की	
	मित्रित करने पर मिन्नण बनाने का रेषीलपी परिवर्तन	
	श्चिम होता है / A मान्य H=0	, ,
	आदर्श विलयन बना ने के लिए शुद्ध अवयवीं की मिन्नित करने पर मिन्नण बनाने का आयतन परिवर्तन शून्य हीता है/ का	生+艺
	करने पर मिन्नण बनाने का आयतन परिवर्तन शून्य होता है/Ang	V=0
30	क) 2- डिऑक्सीराइ बीस, फ़ार-फ़ीरिक अम्ब, नाइट्रीजन पुक्त स्मारन	7 1
		+
	DNA RNA	
	द्विरज्युक कुंडली सक रज्युक कुंडली	1
	(Word) 31 31 95 interpretation difference)	
	(अथवा अन्य मीई संरचनात्मक अंतर)	
	न्यू मिल औटाइड न्यू मिल औसाइड	
	पेन्टीस श्राविश नाइट्री जन पेन्टीस शकिश + नाइदोजन	,
	युक्त भारक फार-फेट युक्त भारक	L
	में आनुवां शिक सूचनाओं की संगृहित करना स्वे	1
	PICI OI VIZMOVI	

		1
	मां।) फॉर्स्फोडाइस्स्टर वेपान	
	मार्सिडाइस्टेर वधान	1 41
	पूरे सिल	272
	<i>२</i> वण्डे डि॰	
31	NNHCONH₂ NNHCONH₂	1
	(II) CH₃COCH₃	1
	(III) CHO	1
	(11) वेन्जीइक अमल सीडियम हाइ ही जनका बीनेट के साथ	
,	अभिनिक्तिमा करके तेज बदबदाहर उत्पन्न करता है शिधिल	1
	बेन्ज़ीस्ट के साथ कोई अभिक्रिया नहीं होती है। (ए) श्रीपेबैल अभी नियामय सिल्वर नाइट्रेट विलयन (टॉलेन	
	अभिग्रक्ति) के आया त्रामें करने पर विनवर देमण बनीती ह	1
	प्रोपेनीन कोई अपिक्रिया नहीं करता है। (अथवा अन्य कोई रसायनिक परीझण)	1
31	≫(i)(i)(l) COOH	1
	(II)1.(BH ₃) ₂ , 2.H ₂ O ₂ /OH ⁻ , 3.PCC (III)	1
	o coō	1
)(ii) (1)	
	CHO (i)K2Cr2O7 (ii) SOCI2 CI Anhyd .AICl3	1
	(II) C_6H_5CHO CH ₃ CHO, dil NaOH, Δ C ₆ H ₅ CH=CHCHO H ₂ /Ni C ₆ H ₅ CH ₂ CH ₂ CH ₂ OH	1
	(अयवा कोई अन्म उपमुक्त विशि	()

(ii) दुर्बल क्षेत्र लिगान्ड दुर्बल क्षेत्र उत्पन्न करते हैं निसके	
कारण ते के सकी का विपाटन कम होता है जबकि	
प्रवव भेत्र विशन्ड प्रवल भेता उत्पन्न करते हैं जिसके	1
कारण व कक्षकों का विपाटन अध्यक होता है।	, '
\$ Asland of the did and and and and and and and and and an	
0 - 2 - 1 AH 7/2011 5 0 91 01 18 1	,
न निर्माल करते हे नवाक देवल हो रा	1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
इसेंक्ट्रानों की अध्यक क्राइंग होने के कारण उच्च प्रयक्रण	•
असंतर भीतिक वनते हैं।	
इ लेंक्ट्रा की अध्यक सरंघा होने के कारण उच्च प्रयक्रण संकृत भीतिक वनते हैं।	
$k = \frac{2.305}{t} \log \frac{[R]}{[R]}$	1
$k = \frac{2 \cdot 303}{60} \log \frac{1.2 \times 10^{-2}}{0.2 \times 10^{-2}}$	1
$= \frac{2 \cdot 303}{60} \log 6$	
$= \frac{2 \cdot 303}{60} \times 0.778$ $k = 2.98 \times 10^{-2} \text{ min}^{-1} / 0.0298 \text{ min}^{-1}$	1 .
(इकाई जानत या ना देने पर ± अंक काट दें) (दाकी टि प्रायोगिक रूप की निर्धारित की जाती है।)
\mathcal{L}	1
प्रियदि किसी यक अभिकारक वहुत अभिका मात्रा में	,
निया जार	
33(2a)(·)(i)	
$\log \frac{k_2}{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
$\log \frac{2k_1}{k_1} = \frac{E_a}{19 \cdot 15} \left[\frac{1}{298} - \frac{1}{308} \right]$	1
$0.3 = \frac{E_a}{19.15} \left[\frac{10}{298 \times 308} \right]$	
$E_{a} = \frac{0.3 \times 19.15 \times 298 \times 308}{10}$	
$E_{a}=52729 \text{ Jmol}^{-1} \text{ or } 52.729 \text{ kJmol}^{-1}$ (ii) (I) $a = K \left[M_{2} O_{2} \right] \left[I \right] \left(5 + I \right) \left[5 + I \right] \left(5 + I \right) \left[5 + I \right] \left(5 + I \right) \left[5 + I \right] $) 1
(m) \a	
9/16 2/19/19	坦
7/Page 3/10/40/1:2/12- 3/10/06	12