

Series: W2YXZ

 $SET \sim 2$

रोल नं.

प्रश्न-पत्र कोड Q.P. Code 56/2/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE

- ${
 m (I)}$ कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ ${f 23}$ हैं ।
 - Please check that this question paper contains 23 printed pages.
- ${
 m (II)}$ कृपया जाँच कर लें कि इस प्रश्न–पत्र में ${f 33}$ प्रश्न हैं ।
 - Please check that this question paper contains 33 questions.
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- $({
 m IV})$ कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें ।

Please write down the serial number of the question in the answerbook at the given place before attempting it.

- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
 - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Time allowed: 3 hours

अधिकतम अंक : 70

Maximum Marks : **70**

P.T.O.

56/2/2 78

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्नपत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्नपत्र **पाँच** खण्डों में विभाजित है खण्ड **क**, **ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क –** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग –** प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ –** प्रश्न संख्या **29** तथा **30** प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) **खण्ड ङ –** प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानोंका उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9\times 10^9~N~m^2~C^{-2}$$

इलेक्ट्रॉन का द्रव्यमान (m_e) = 9.1×10^{-31} kg.

न्यूट्रॉन का द्रव्यमान =
$$1.675 \times 10^{-27} \text{ kg}$$
.

प्रोटॉन का द्रव्यमान =
$$1.673 \times 10^{-27} \text{ kg}$$
.

आवोगाद्रो संख्या =
$$6.023 \times 10^{23}$$
 प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक =
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) **Section A** questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) **Section** C questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section -A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is NOT allowed.

You may use the following values of physical constants wherever necessary:

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \, Js$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0}$$
 = 9 × 10⁹ N m² C⁻²

Mass of electron (m_e) = 9.1×10^{-31} kg.

Mass of neutron = 1.675×10^{-27} kg.

Mass of proton = 1.673×10^{-27} kg.

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann's constant = $1.38 \times 10^{-23} \,\mathrm{JK^{-1}}$

56/2/2 $\sim 3 \sim$ P.T.O.

खण्ड – क

 $16 \times 1 = 16$

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

प्रश्न संख्या 1 से 4 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 1. **अभिकथन (A)**: विटामिन D हमारे शरीर में संचित नहीं हो सकता है।
 - कारण (R): विटामिन D वसा में घुलनशील विटामिन है और मूत्र के माध्यम से शरीर से बाहर नहीं निकलता है।
- 2. **अभिकथन (A):** ऐरोमैटिक प्राथमिक ऐमीन को गैब्रिएल थैलिमाइड संश्लेषण द्वारा नहीं बनाया जा सकता है।
 - कारण (R): ऐरिल हैलाइड थैलिमाइड से प्राप्त ऋणायन के साथ नाभिकरागी प्रतिस्थापन अभिक्रिया नहीं कर सकते।
- 3. **अभिकथन (A) :** Cu तनु खनिज अम्ल के साथ अभिक्रिया करके H_2 मुक्त नहीं कर सकता । कारण (R) : Cu इलेक्टोड विभव धनात्मक है ।
- 4. अभिकथन (A): प्रथम कोटि अभिक्रिया में यदि अभिकारक की सांद्रता दोगुनी हो जाती है, तो इसका अर्धायुकाल भी दोगुना हो जाता है।
 - कारण (R): प्रथम कोटि अभिक्रिया में अर्धायुकाल अभिकारक की प्रारंभिक सांद्रता पर निर्भर नहीं करता है।

56/2/2

Question No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

For questions number 1 to 4, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 1. **Assertion (A):** Vitamin D cannot be stored in our body.
 - **Reason (R):** Vitamin D is fat soluble vitamin and is not excreted from the body in urine.
- 2. **Assertion (A):** Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.
 - **Reason (R)**: Aryl halides do not undergo nucleophilic substitution reaction with the anion formed by phthalimide.
- 3. **Assertion (A)**: Cu cannot liberate H₂ on reaction with dilute mineral acids.
 - **Reason (R):** Cu has positive electrode potential.
- 4. **Assertion (A)**: In a first order reaction, if the concentration of the reactant is doubled, its half-life is also doubled.
 - **Reason (R):** The half-life of a reaction does not depend upon the initial concentration of the reactant in a first order reaction.

 $\overline{\sim 5} \sim P.T.O.$

			(A)	
5.	स्कर्वी	रोग किसकी कमी के कारण होता है ?		
	(A)	विटामिन B1	(B)	विटामिन B2
	(C)	ऐस्कॉर्बिक अम्ल	(D)	ग्लूटामिक अम्ल
6.	न्यूक्ति	नयोटाइड आपस में किस बंध द्वारा जुड़े होते हैं	?	
	(A)	ग्लाइकोसाइडी बंध	(B)	पेप्टाइड बंध
	(C)	हाइड्रोजन आबंध	(D)	फॉस्फोडाइएस्टर बंध
7.	निम्न	लेखित में से कौन सा/से प्रोटीन के विकृतीकरण	का उ	दाहरण है/हैं ?
	(A)	अंडे की सफेदी का स्कंदन	(B)	दही का जमना
	(C)	रक्त का थक्का बनना	(D)	(A) और (B) दोनों
8.	फीनॉ	ल का सैलिसिलिक अम्ल में रूपांतरण निम्न में व	पे किस	के द्वारा किया जा सकता है ?
	(A)	राइमर-टीमन अभिक्रिया	(B)	फ़्रीडेल-क्राफ्ट्स अभिक्रिया
	(C)	कोल्बे अभिक्रिया	(D)	युग्मन अभिक्रिया
9.	द्वितीय बनेगा	ाक ऐल्कोहॉल की क्रोमिक ऐनहाइड्राइड (${ m Cr}$	O ₃) वे	5 साथ ऑक्सीकरण अभिक्रिया के <mark>बाद</mark> क्या
	(A)	एल्डिहाइड	(B)	कीटोन
	(C)	कार्बोक्सिलिक अम्ल	(D)	एस्टर
10.	निम्नी	लेखित के लिए कौन सा सही IUPAC नाम है CH		

(B) टॉल्यूईन

(C) 1-क्लोरो-4-मेथिलबेंज़ीन

(D) 1—मेथिल—4—क्लोरोबेंज़ीन

- 5. Scurvy is caused due to deficiency of
 - (A) Vitamin B1

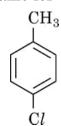
(B) Vitamin B2

(C) Ascorbic acid

- (D) Glutamic acid
- 6. Nucleotides are joined together by
 - (A) Glycosidic linkage
- (B) Peptide linkage
- (C) Hydrogen bonding
- (D) Phosphodiester linkage
- 7. Which of the following is/are examples of denaturation of protein?
 - (A) Coagulation of egg white
- (B) Curdling of milk

(C) Clotting of blood

- (D) Both (A) and (B)
- 8. The conversion of phenol to salicylic acid can be accomplished by
 - (A) Reimer-Tiemann reaction
- (B) Friedel-Crafts reaction


(C) Kolbe reaction

- (D) Coupling reaction
- 9. What will be formed after oxidation reaction of secondary alcohol with chromic anhydride (CrO₃)?
 - (A) Aldehyde

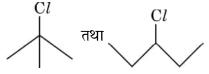
(B) Ketone

(C) Carboxylic acid

- (D) Ester
- 10. Which is the correct IUPAC name for

- (A) Methylchlorobenzene
- (B) Toluene
- (C) 1–Chloro–4–Methylbenzene
- (D) 1-Methyl-4-Chlorobenzene

11.	प्रतिचु	jबकीय स्पीशीज़ है		
	(A)	$[Ni(CN)_4]^{2-}$	(B)	$[\mathrm{NiC}l_4]^{2-}$
	(C)	$[\mathrm{Fe(CN)}_6]^{3-}$	(D)	$[{ m CoF}_{6}]^{3-}$
	[परम	ाणु संख्या : Co = 27, Fe = 26, Ni	i = 28]	
12.	संकुल	न आयन [Co(NH ₃) ₅ (NO ₂)] ²⁺ तथा	「[Co(NH ₃)	$_{5}(\mathrm{ONO})]^{2+}$ कहलाते हैं
	(A)	आयनन समावयवी	(B)	बंधनी समावयवी
	(C)	उपसहसंयोजन समावयवी	(D)	ज्यामितीय समावयवी
13.	[Ar]	$3\mathrm{d}^{10}4\mathrm{s}^1$ इलेक्ट्रॉनिक विन्यास वाला त	ात्व है	
	(A)	Cu	(B)	Zn
	(C)	Cr	(D)	Mn
14.	अणुउ	भों की संख्या जो किसी प्राथमिक अभिद्रि	क्रेया में परस्पर	अभिक्रिया करते हैं, एक माप होती है
	(A)	अभिक्रिया की सक्रियण ऊर्जा की	(B)	अभिक्रिया की स्टॉइकियोमेट्री की
	(C)	अभिक्रिया की आण्विकता की	(D)	अभिक्रिया की कोटि की
15.	निम्न	लेखित में से कौन सा कथन गलत है ?		
	(A)	शून्य कोटि अभिक्रिया वेग अभिकारक	की प्रारंभिक र	नांद्रता से स्वतंत्र होता है ।
	(B)	शून्य कोटि अभिक्रिया की अर्द्ध-आयु	, वेग स्थिरांक	के व्युत्क्रमानुपाती होती है ।
	(C)	किसी अभिक्रिया की आण्विकता शून्य	। हो सकती है	
	(D)	प्रथम कोटि अभिक्रिया के लिए $\mathbf{t}_{1/2}$ =	= 0.693/k	
16.	1 मोत	ल ${ m MnO}_4^-$ को ${ m MnO}_2$ में अपचयित र	करने के लिए 3	भावश्यक आवेश है
	(A)	1 F	(B)	3 F
	(C)	5 F	(D)	6 F
				······
56/2	8/2/2		~ 8 ~	


11.	The	diamagnetic species is:		
	(A)	$[Ni(CN)_4]^{2-}$	(B)	$[\mathrm{NiC}l_4]^{2-}$
	(C)	$[\mathrm{Fe(CN)}_6]^{3-}$	(D)	$[{ m CoF}_{6}]^{3-}$
	[At.	No. Co = 27 , Fe = 26 , Ni = 28]		
12.	The	complex ions $[\mathrm{Co(NH_3)_5}\;(\mathrm{NO_2})]^{2+}$	and	$[\mathrm{Co(NH_3)_5(ONO)}]^{2+}$ are called
	(A)	Ionization isomers	(B)	Linkage isomers
	(C)	Co-ordination isomers	(D)	Geometrical isomers
13.	The	element having [Ar]3d ¹⁰ 4s ¹ elect	ronic	configuration is
	(A)	Cu	(B)	Zn
	(C)	Cr	(D)	Mn
14.		number of molecules that reaction is a measure of the :	t witl	h each other in an elementary
	(A)	activation energy of the reaction	(B)	stoichiometry of the reaction
	(C)	molecularity of the reaction	(D)	order of the reaction
15.	Whi	ch among the following is a false	state	ment?
	(A)	Rate of zero order reaction is in reactant.	depe	ndent of initial concentration of
	(B)	Half-life of a zero order reaction constant.	ı is in	versely proportional to the rate
	(C)	Molecularity of a reaction may b	e zer	0.
	(D)	For a first order reaction, $t_{1/2} = 0$	0.693/	k.
16.	The	charge required for the reduction	of 1	$\operatorname{mol} \operatorname{of} \operatorname{MnO}_{4}^{-} \operatorname{to} \operatorname{MnO}_{2} \operatorname{is}$
	(A)	1 F	(B)	3 F
	(C)	5 F	(D)	6 F
56/2	2/2	~ 9		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<i>3</i>	., =	~ 9	,~	1.1.0.

खण्ड - ख

17.~(a)~ हैलोजन यौगिकों के निम्नलिखित युगल में से कौन सा यौगिक तीव्रता से $\mathbf{S}_{\mathrm{N}}1$ अभिक्रिया करेगा और क्यों ?

1

(b) निम्नलिखित यौगिकों को $S_N 2$ प्रतिस्थापन के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में व्यवस्थित कीजिए :

1

- 2—ब्रोमो-2—मेथिलब्यूटेन, 1—ब्रोमोपेन्टेन, 2—ब्रोमोपेन्टेन
- 18. कोई अभिक्रिया अभिक्रियक के संबंध में द्वितीय कोटि की है। अभिक्रिया का वेग कैसे प्रभावित होगा; यदि अभिक्रियक की सांद्रता (i) दुगुनी कर दी जाए (ii) आधी कर दी जाए ?

2

19. जब ${\rm FeCr_2O_4}$ को वायु की उपस्थिति में ${\rm Na_2CO_3}$ के साथ संगलित किया जाता है, तो यह यौगिक (A) का पीला विलयन देता है । यौगिक (A) अम्लीकृत होने पर यौगिक (B) देता है । यौगिक (B) ${\rm KC}l$ के साथ अभिक्रिया करके नारंगी रंग का यौगिक (C) बनाता है । यौगिक (C) का अम्लीय विलयन ${\rm Na_2SO_3}$ को (D) में ऑक्सीकृत करता है । (A), (B), (C) और (D) को पहचानिए ।

2

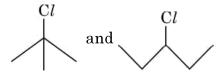
20. समझाइए कि $[\mathrm{Co(NH_3)}_6]^{3+}$ एक आंतरिक कक्षक संकुल है जबिक $[\mathrm{Ni(NH_3)}_6]^{2+}$ एक बाह्य कक्षक संकुल है। [परमाणु संख्या : $\mathrm{Co}=27,\ \mathrm{Ni}=28$]

2

21. (A) शून्य कोटि की अभिक्रिया $A \to P$ के लिए वेग स्थिरांक $0.0030~{
m mol~L^{-1}s^{-1}}$ है । A की प्रारंभिक सांद्रता $0.10~{
m M}$ से $0.075~{
m M}$ तक रह जाने में कितना समय लगेगा ?

2

अथवा


(B) प्लैटिनम सतह पर ${
m NH_3}$ का अपघटन शून्य कोटि अभिक्रिया है । यदि ${
m k}=2.5\times 10^{-4}$ ${
m mol~L^{-1}~s^{-1}}$ है तो ${
m N_2}$ और ${
m H_2}$ के उत्पादन की दरें क्या हैं ?

SECTION - B

17. (a) In the following pair of halogen compounds, which compound undergoes $S_N 1$ reaction faster and why?

1

(b) Arrange the following compounds in increasing order of their reactivity towards $S_{\rm N}2$ displacement :

1

- $2-Bromo-2-methyl butane,\ 1-Bromopentane,\ 2-Bromopentane.$
- 18. A reaction is of second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is (i) doubled (ii) reduced to half?

 $\mathbf{2}$

19. When FeCr₂O₄ is fused with Na₂CO₃ in the presence of air it gives a yellow solution of compound (A). Compound (A) on acidification gives compound (B). Compound (B) on reaction with KCl forms an orange coloured (C). An acidified solution of compound (C) oxidises Na₂SO₃ to (D). Identify (A), (B), (C) and (D).

2

20. Explain $[\text{Co(NH}_3)_6]^{3+}$ is an inner orbital complex whereas $[\text{Ni(NH}_3)_6]^{2+}$ is an outer orbital complex. [At. No. Co = 27, Ni = 28]

2

21. (A) The rate constant for a zero order reaction $A \rightarrow P$ is 0.0030 mol L⁻¹s⁻¹. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?

2

OR

(B) The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4}$ mol L^{-1} s⁻¹?

खण्ड - ग

जल में प्रति लीटर 15 ग्राम यूरिया (मोलर द्रव्यमान $=60~\mathrm{g~mol^{-1}}$) वाले विलयन का परासरण दाब 22. जल में ग्लूकोज़ (मोलर द्रव्यमान = 180 g mol^{-1}) के विलयन के समान (आइसोटोनिक) है । इसके एक लीटर में उपस्थित ग्लूकोज़ के द्रव्यमान का परिकलन कीजिए।

3

23. एसीटिक अम्ल के लिए $\Lambda^{\circ} \mathbf{m}$ और इसकी वियोजन मात्रा (lpha) की गणना करें यदि इसकी मोलर चालकता $48.1~\Omega^{-1}~{
m cm}^2~{
m mol}^{-1}$ है।

3

दिया गया है:

 Λ° m (HC*l*) = 426 Ω^{-1} cm² mol⁻¹

 Λ° m (NaC*l*) = 126 Ω^{-1} cm² mol⁻¹

 Λ° m (CH₃COONa) = 91 Ω^{-1} cm² mol⁻¹

- $m d^4$ स्पीशीज़ में से $m Cr^{2+}$ प्रबल अपचायक है जबिक $m Mn^{3+}$ प्रबल ऑक्सीकारक है । 24.(a) 3×1
 - लैन्थेनॉयड आकंचन के दो परिणाम लिखिए। (b)
 - 3d-श्रेणी के किस तत्व की कणन एन्थेल्पी न्युनतम है और क्यों ?
- निम्नलिखित उपसहसंयोजन तत्वों के IUPAC नाम बताइए :

3

- (a) $[Fe(en)_{2}Cl_{2}]^{+}$
- (b) $[Co(NH_3)_4(H_2O)Br]SO_4$
- (c) $[Ni(CN)_4]^{2^-}$
- (A) निम्नलिखित अभिक्रियाओं की व्याख्या कीजिए और सम्मिलित समीकरण लिखिए: 26.

 $3 \times 1 = 3$

- वोल्फ-किश्नर अपचयन (a)
- एटार्ड अभिक्रिया (b)
- कैनिज़ारो अभिक्रिया (c)

अथवा

(B) निम्न अभिक्रियाओं के अनुक्रम में A, B और C की संरचनाएँ लिखिए : $2 \times 1\frac{1}{2} = 3$

- $\text{CH}_3\text{COOH} \xrightarrow{\text{SOC}l_2} \text{A} \xrightarrow{\text{H}_2, \text{Pd-BaSO}_4} \text{B} \xrightarrow{\text{H}_2\text{N-NH}_2} \text{C}$
- (b) $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{\neg \exists \exists NaOH} B \xrightarrow{\Delta} C$

56/2/2

SECTION - C

22. A solution containing 15 g urea (molar mass = 60 g mol⁻¹) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol⁻¹) in water. Calculate the mass of glucose present in one litre of its solution.

3

23. Calculate Λ° m for acetic acid and its degree of dissociation (α) if its molar conductivity is 48.1 Ω^{-1} cm² mol⁻¹.

3

3

Given that

 Λ° m (HC*l*) = 426 Ω^{-1} cm² mol⁻¹

 Λ° m (NaC*l*) = 126 Ω^{-1} cm² mol⁻¹

 Λ° m (CH₃COONa) = 91 Ω^{-1} cm² mol⁻¹

- 24. (a) Of the d^4 species, Cr^{2+} is strongly reducing while Mn^{3+} is strongly oxidising. Why? 3×1
 - (b) Write two consequences of lanthanoid contraction.
 - (c) Which element of 3d series has lowest enthalpy of atomisation and why?
- 25. Write IUPAC names of the following coordination entities:
 - (a) $[Fe(en)_2Cl_2]^+$
 - $\mathrm{(b)}\quad \mathrm{[Co(NH_3)_4(H_2O)Br]SO_4}$
 - (c) $[Ni (CN)_4]^{2^-}$
- 26. (A) Explain the following reactions and write chemical equation involved:

 $3 \times 1 = 3$

- (a) Wolff-Kishner reduction
- (b) Etard reaction
- (c) Cannizzaro reaction

OR

- (B) Write the structures of A, B and C in the following sequence of reactions: $2 \times 1\frac{1}{2} = 3$
 - (a) $CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{H_2, Pd-BaSO_4} B \xrightarrow{H_2N-NH_2} C$
 - (b) $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{Dil. NaOH} B \xrightarrow{\Delta} C$

~ 13 ~

P.T.O.

27. (a) निम्नलिखित को परिभाषित कीजिए:

2 + 1 = 3

3

- (i) प्रतिबिंब रूप (एनेनटियोमर)
- (ii) रेसिमिक मिश्रण
- (b) क्लोरोबेंज़ीन नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति प्रतिरोधी क्यों है ?
- $28. \quad (a) \quad जब D-ग्लूकोज़ <math>
 m H_2N-OH$ के साथ अभिक्रिया करता है तो प्राप्त उत्पाद लिखिए।
 - (b) ऐमीनो अम्ल उभयधर्मी व्यवहार दर्शाते हैं, क्यों ?
 - (c) विटामिन C हमारे शरीर में क्यों संचित नहीं हो सकता ?

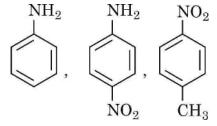
खण्ड – घ

- 29. ऐमीनों में नाइट्रोजन परमाणु पर एकाकी इलेक्ट्रॉन युग्म होता है जिसके कारण वे लुईस क्षारक की तरह व्यवहार करते हैं । K_b का मान जितना अधिक होगा या pK_b का मान जितना कम होगा, क्षारक उतना ही प्रबल होगा । ऐल्कोहॉल, ईथर, एस्टर आदि की तुलना में ऐमीन अधिक क्षारकीय हैं । ऐलिफैटिक ऐमीन का क्षारकीय गुण ऐल्किल प्रतिस्थापन की वृद्धि के साथ–साथ बढ़ना चाहिए । लेकिन यह नियमित रूप से नहीं होता है क्योंकि द्वितीयक ऐलिफैटिक ऐमीन अप्रत्याशित रूप से जलीय विलयन में तृतीयक ऐमीन की तुलना में उधिक क्षारकीय होता है । ऐरोमैटिक ऐमीन अमोनिया और ऐलिफैटिक ऐमीन की तुलना में दुर्बल क्षारक होते हैं । इलेक्ट्रॉन मुक्त करने वाले समूह जैसे CH_3 , — OCH_3 , — NH_2 आदि, क्षारकीयता को बढ़ाते हैं जबिक इलेक्ट्रॉन खींचने (अपनयन) वाले प्रतिस्थापित समूह जैसे NO_2 , —CN, हैलोजन आदि, ऐमीन की क्षारकीयता को कम करते हैं । इन प्रतिस्थापनों का प्रभाव m^- स्थितियों की तुलना में p^- पर अधिक होता है ।
 - (a) निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए। कारण दीजिए।

$$NH_2$$
 NH_2 NO_2 NO_2 NO_2 NO_2

(b) मेथिलऐमीन की तुलना में ऐनिलीन का pK_b मान अधिक क्यों होता है ?

1


27. (a) Define the following:

2 + 1 = 3

- (i) Enantiomers
- (ii) Racemic mixture
- (b) Why is chlorobenzene resistant to nucleophilic substitution reaction?
- 28. (a) Write the product obtained when D-glucose reacts with $H_2N OH$. 3
 - (b) Amino acids show amphoteric behaviour, why?
 - (c) Why vitamin C cannot be stored in our body?

SECTION - D

- 29. Amines have a lone pair of electrons on nitrogen atom due to which they behave as Lewis base. Greater the value of K_b or smaller the value of pK_b , stronger is the base. Amines are more basic than alcohols, ethers, esters, etc. The basic character of aliphatic amines should increase with the increase of alkyl substitution. But it does not occur in a regular manner as a secondary aliphatic amine is unexpectedly more basic than a tertiary amine in aqueous solutions. Aromatic amines are weaker bases than ammonia and aliphatic amines. Electron releasing groups such as $-CH_3$, $-OCH_3$, $-NH_2$, etc., increase the basicity while electron-withdrawing substituents such as $-NO_2$, -CN, halogens etc., decrease the basicity of amines. The effect of these substitute is more at p^- than at m^- position.
 - (a) Arrange the following in the increasing order of their basic character. Give reason:

(b) Why pK_h of aniline is more than that of methylamine?

1

P.T.O.

(c) (i) जलीय विलयन में निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए। कारण दीजिए।

1

1

2

1

1

 $(CH_3)_3N$, $(CH_3)_2NH$, NH_3 , CH_3NH_2

अथवा

- (c) (ii) शुद्ध ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का ऐमोनी-अपघटन एक अच्छी विधि क्यों नहीं है ?
- 30. शुद्ध विलायक से विलयन में अथवा तनु विलयन से सांद्र विलयन में अर्धपारगम्य झिल्ली के माध्यम से विलायक का स्वतः प्रवर्तित प्रवाह परासरण कहलाता है। परासरण परिघटना को एक ही आकार के दो अंडों को लेकर प्रदर्शित किया जा सकता है। अंडे में खोल के नीचे और अंडे के पदार्थ के चारों ओर की झिल्ली अर्धपारगम्य होती है। अंडे को तनु हाइड्रोक्लोरिक अम्ल में डालकर बाहरी कठोर खोल को हटाया जा सकता है। कठोर खोल को हटाने के बाद एक अंडे को आसुत जल में और दूसरे को संतृप्त नमक के घोल में रखा जाता है। कुछ समय बाद, आसुत जल में रखा अंडा फूल जाता है, जबिक नमक के घोल में रखा अंडा सिकुड़ जाता है। परासरण को रोकने के लिए लगाया गया बाह्य दाब, परासरण दाब (एक अणुसंख्य गुणधर्म) कहलाता है। प्रतिलोम परासरण तब होता है जब लगाया गया बाह्य दाब परासरण दाव से अधिक हो जाता है।
 - (a) प्रतिलोम परासरण को परिभाषित कीजिए। एक अर्धपारगम्य झिल्ली (SPM) का नाम बताइए जिसका उपयोग प्रतिलोम परासरण की प्रक्रिया में किया जा सकता है।
 - (b) (i) जब लाल रुधिर कोशिकाओं (RBC) को $0.5\%~{\rm NaC}l$ विलयन में रखा जाता है तो आप क्या होने की अपेक्षा करते हैं ?

अथवा

- (b) (ii) $1~{
 m M~KC}l$ अथवा $1~{
 m M~z}$ ्रिया विलयन में से किसका परासरण दाब अधिक होगा । अपने उत्तर का औचित्य दीजिए ।
- (c) परासरण दाब एक अणुसंख्य गुणधर्म क्यों है ?

56/2/2 ~ 16 ~

(c) (i) Arrange the following in the increasing order of their basic character in an aqueous solution:

1

(CH₃)₃N, (CH₃)₂NH, NH₃, CH₃NH₂

OR

(c) (ii) Why ammonolysis of alkyl halides is not a good method to prepare pure amines?

1

- 30. The spontaneous flow of the solvent through a semipermeable membrane from a pure solvent to a solution or from a dilute solution to a concentrated solution is called osmosis. The phenomenon of osmosis can be demonstrated by taking two eggs of the same size. In an egg, the membrane below the shell and around the egg material is semipermeable. The outer hard shell can be removed by putting the egg in dilute hydrochloric acid. After removing the hard shell, one egg is placed in distilled water and the other in a saturated salt solution. After some time, the egg placed in distilled water swells-up while the egg placed in salt solution shrinks. The external pressure applied to stop the osmosis is termed as osmotic pressure (a colligative property). Reverse osmosis takes place when the applied external pressure becomes larger than the osmotic pressure.
 - (a) Define reverse osmosis. Name one SPM which can be used in the process of reverse osmosis.

2

(b) (i) What do you expect to happen when red blood corpuscles (RBC's) are placed in 0.5% NaCl solution?

1

OR

(b) (ii) Which one of the following will have higher osmotic pressure in $1~\mathrm{M}~\mathrm{KC}l$ or $1~\mathrm{M}~\mathrm{urea}$ solution. Justify your answer.

1

(c) Why osmotic pressure is a colligative property?

खण्ड – ङ

31. (A) आण्विक सूत्र C_2H_6O वाला कोई कार्बनिक यौगिक 'A' CrO_3 के साथ अभिक्रिया करके यौगिक 'B' बनाता है । यौगिक 'B' आयोडीन और NaOH के जलीय विलयन के साथ गर्म किए जाने पर यौगिक 'C' का पीला अवक्षेप देता है । जब यौगिक 'A' को $413~\rm K$ पर सांद्र H_2SO_4 के साथ गर्म करते हैं तो यौगिक 'D' बनता है जो आधिक्य HI के साथ अभिक्रिया करके यौगिक 'E' देता है । यौगिक 'A', 'B', 'C', 'D' और 'E' की पहचान कीजिए तथा सम्मिलित रासायनिक समीकरण लिखिए ।

अथवा

5

- 31. (B) (a) निम्नलिखित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए : 3+1+1=5
 - (i) सांद्र HNO_3 के साथ फ़ीनॉल की अभिक्रिया
 - ${
 m (ii)} \quad {
 m B_2H_6}$ के साथ प्रोपीन की अभिक्रिया उसके पश्चात उसका ${
 m H_2O_2/OH^-}$ द्वारा ऑक्सीकरण
 - (iii) सोडियम t-ब्यूटॉक्साइड के साथ $\mathrm{CH_3C}l$ की अभिक्रिया
 - (b) ब्यूटेन—1—ऑल और ब्यूटेन—2—ऑल के मध्य विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए।
 - (c) निम्नलिखित को उनके अम्लीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए : फ़ीनॉल, एथेनॉल, जल
- 32. (A) (a) $CH_3 CH = CH CHO$ का IUPAC नाम बताइए ।
 - (b) प्रोपेनैल और प्रोपेनोन में विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए। 1
 - (c) आप निम्नलिखित को कैसे परिवर्तित करेंगे ?
 - (i) टॉलूईन को बेंजोइक अम्ल में
 - (ii) एथेनॉल को प्रोपेन-2-ऑल में
 - (iii) प्रोपेनैल को 2-हाइड्रॉक्सीप्रोपेनोइक अम्ल में

अथवा

SECTION - E

31. (A) An organic compound 'A', molecular formula $\rm C_2H_6O$ oxidises with $\rm CrO_3$ to form a compound 'B'. Compound 'B' on warming with iodine and aqueous solution of NaOH gives a yellow precipitate of compound 'C'. When compound 'A' is heated with conc. $\rm H_2SO_4$ at 413 K gives a compound 'D', which on reaction with excess HI gives compound 'E'. Identify compounds 'A', 'B', 'C', 'D' and 'E' and write chemical equations involved. OR

- 31. (B) (a) Write chemical equations of the following reactions: 3 + 1 + 1 = 5
 - (i) Phenol is treated with conc. HNO₃
 - (ii) Propene is treated with $\rm B_2H_6$ followed by oxidation by $\rm H_2O_2/OH^-.$

5

1

1

P.T.O.

- (iii) Sodium t-but oxide is treated with $\mathrm{CH_3C} l.$
- (b) Give a simple chemical test to distinguish between butan-1-ol and butan-2-ol.
- (c) Arrange the following in increasing order of acid strength: phenol, ethanol, water
- 32. (A) (a) Give IUPAC name of $CH_3 CH = CH CHO$.
 - (b) Give a simple chemical test to distinguish between propanal and propanone.
 - (c) How will you convert the following:
 - (i) Toluene to benzoic acid
 - (ii) Ethanol to propan-2-ol
 - (iii) Propanal to 2-hydroxy propanoic acid

OR ______ ~~

56/2/2

32. (B) निम्नलिखित प्रत्येक संश्लेषण में छूटे हुए प्रारंभिक पदार्थ, अभिकर्मक अथवा उत्पादों को देकर पूर्ण कीजिए : $\mathbf{5} \times \mathbf{1} = \mathbf{5}$

(a)
$$O + HO - NH_2 \xrightarrow{H^+}$$

(b)
$$? \frac{(i) O_3}{(ii) Zn - H_2O} 2 \bigcirc = O$$

(c) OH
$$OH$$
 OH OH OH OH

(d)
$$CHO \longrightarrow COOH \longrightarrow NaCN/HCl \longrightarrow NaCN/HCl \longrightarrow COOH \longrightarrow NaCN/HCl \longrightarrow NaCN/HC$$

(e)
$$C$$
 CH_3

 $33.~(A)~(a)~25~^{\circ}\mathrm{C}~$ पर निम्नलिखित अभिक्रिया के लिए मानक गिब्ज ऊर्जा ($\Delta_{\mathrm{r}}\mathrm{G}^{\circ}$) का परिकलन कीजिए : $\mathbf{3+2}$

$$\mathrm{Au}(\mathrm{s}) + \mathrm{Ca}^{2+}(\mathrm{1M}) \to \mathrm{Au}^{3+}(\mathrm{1M}) + \mathrm{Ca}(\mathrm{s})$$

$$\rm E^{\circ}_{Au^{3+}\!/Au}=+$$
 1.5 V, $\rm E^{\circ}_{Ca^{2+}\!/Ca}=-$ 2.87 V

प्रागुक्ति कीजिए कि $25~^{\circ}\mathrm{C}$ पर अभिक्रिया स्वतः प्रवर्तित होगी या नहीं।

 $[1 \text{ F} = 96500 \text{ C mol}^{-1}]$

32. (B) Complete each synthesis by giving missing starting material, reagent or products : $5 \times 1 = 5$

(a)
$$O + HO - NH_2 \xrightarrow{H^+}$$

(b)
$$? \frac{(i) O_3}{(ii) Zn - H_2O} 2$$

(c) OH
$$OH$$
 OH OH OH OH

(d)
$$CHO \longrightarrow NaCN/HCl \longrightarrow COOH$$

(e)
$$C$$
 CH_3

33. (A) (a) Calculate the standard Gibbs energy ($\Delta_{\rm r}G^{\circ}$) of the following reaction at 25 °C :

$$\mathrm{Au}(\mathrm{s}) + \mathrm{Ca}^{2+}(\mathrm{1M}) \to \mathrm{Au}^{3+}(\mathrm{1M}) + \mathrm{Ca}(\mathrm{s})$$

$$E_{Au^{3+}/Au}^{\circ} = + 1.5 \text{ V}, E_{Ca^{2+}/Ca}^{\circ} = -2.87 \text{ V}$$

Predict whether the reaction will be spontaneous or not at 25 $^{\circ}\mathrm{C}.$

P.T.O.

$$[1 \text{ F} = 96500 \text{ C mol}^{-1}]$$

(b) मिलन चाँदी में ${
m Ag_2S}$ होता है । क्या इस मिलनता को मिलन चाँदी के बर्तन को एल्युमिनियम पैन में रखकर हटाया जा सकता है, जिसमें ${
m Na}Cl$ जैसा निष्क्रिय विद्युत अपघटनी विलयन भरा हो ? अर्ध अभिक्रिया के लिए मानक इलेक्ट्रॉड विभव :

$$Ag_2S(s)+2e^-\longrightarrow 2Ag(s)+S^{2-}$$
 के लिए $-0.71~V$ है और
$$Al^{3+}+3e^-\longrightarrow 2Al(s)$$
 के लिए $-1.66~V$ है ।

अथवा

33. (B) (a) निम्नलिखित को परिभाषित कीजिए:

2 + 3

- (i) सेल विभव
- (ii) ईंधन सेल
- (b) निम्नलिखित सेल के emf की 25 °C पर गणना करें:

$$Zn(s) \left| Zn_{(0.1M)}^{2+} \right| \left| \right| Cd_{(0.01M)}^{2+} \left| \right| Cd(s)$$

दिया है :
$$E_{Cd^{2+}/Cd}^{\circ} = -0.40 \text{ V}$$

$$E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$$

$$[\log 10 = 1]$$

(b) Tarnished silver contains Ag₂S. Can this tarnish be removed by placing tarnished silverware in an aluminium pan containing an inert electrolytic solution such as NaCl? The standard electrode potential for half reaction:

$$Ag_2S(s) + 2e^- \longrightarrow 2Ag(s) + S^{2-} is -0.71 V$$
 and for
$$Al^{3+} + 3e^- \longrightarrow 2Al(s) is -1.66 V$$

OR

33. (B) (a) Define the following:

2 + 3

- (i) Cell potential
- (ii) Fuel cell
- (b) Calculate emf of the following cell at $25 \, ^{\circ}\text{C}$:

$$Zn(s) \, | \, Zn_{(0.1M)}^{\, 2+} \, \, | \, | \, \, Cd_{(0.01M)}^{\, 2+} \, \, | \, \, Cd(s)$$

Given :
$$E_{Cd^{2+}/Cd}^{\circ} = -0.40 \text{ V}$$

$$E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$$

$$[\log\,10=1]$$

56/2/2

56/2/2

731-2

~ 24 ~

^

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Senior School Certificate Examination, 2024-25
SUBJECT NAME CHEMISTRY (Theory) -043

(Q.P.CODE 56/2/2) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{\ }$) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks ______(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2024-25

CHEMISTRY (Theory)- 043

QP CODE 56/2/2 MM: 70

Q. No	Value points	Mark
	SECTION A	
1	(D)	1
2	(A)	1
3	(A)	1
4	(D)	1
5	(C)	1
6	(D)	1
7	(D)	1
8	(C)	1
9	(B)	1
10	(C)	1
11	(A)	1
12	(B)	1
13	(A)	1
14	(C)	1
15	(C)	1
16	(B)	1
	SECTION B	
17	(a) C1	
	, due to the formation of more stable tertiary carbocation. (b) 2-Bromo-2-methylbutane < 2-Bromopentane < 1-Bromopentane.	½,½ 1
18	(i) Rate = k[2R] ² Rate=4 times (ii) Rate = k[R/2] ²	1
19	Rate = $\frac{1}{4}$ times (A) = Na ₂ CrO ₄ / Sodium chromate	1
19	(A) = Na ₂ Cr ₂ O ₇ / Sodium cirromate (B) = Na ₂ Cr ₂ O ₇ / Sodium dichromate (C) = K ₂ Cr ₂ O ₇ / Potassium dichromate (D) = Na ₂ SO ₄ / Sodium sulphate	½ x 4
20	In case of $[Co(NH_3)_6]^{3+}$, presence of NH_3 , the 3d electrons pair up leaving two d orbitals empty to be involved in d^2sp^3 hybridisation forming inner orbital complex. In $[Ni(NH_3)_6]^{2+}$, Ni is in +2 oxidation state and has d^8 configuration, the hybridization involved is sp^3d^2 forming outer orbital complex.	1
21	$k = \frac{[R]_0 - [R]}{t}$	1/2
	$t = \frac{0.10 - 0.075}{0.0030}$ $t = \frac{0.025}{0.0030}$	1
	0.0030 t = . 8,33 s	1/2
	OR	

21	Rate = $\frac{-1 \Delta [NH3]}{2 \Delta t} = \frac{\Delta [N2]}{\Delta t} = \frac{+1 \Delta [H2]}{3 \Delta t}$	1/2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{-1 \Delta[NH3]}{2 \Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1 \Delta[H2]}{3 \Delta t} = k$	1/2
	$\frac{\Delta[N2]}{\Delta t} = 2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$	1/2
	$\frac{\Delta[H2]}{\Delta t} = 3 \times 2.5 \times 10^{-4}$	
	$= 7.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$	1/2
	SECTION C	/2
22	$\pi_{\text{Glucose}} = \pi_{\text{Urea}}$	1/2
	$C_G = C_U$	
	$\frac{W_G}{M_G} = \frac{W_U}{M_U} \\ \frac{W_G}{180} = \frac{15}{60}$	1/2
	$\frac{v_G}{180} = \frac{13}{60}$	1
	$W_{G} = \frac{15 \times 180}{60}$	
	= 45 g (Deduct ½ mark for no or incorrect unit)	1
23		1
	$\Lambda_{m(\text{HAc})}^{\text{o}} = \Lambda_{m(\text{HCI})}^{\text{o}} + \Lambda_{m(\text{NaAc})}^{\text{o}} - \Lambda_{m(\text{NaCI})}^{\text{o}}$	
	= (426 + 91 -126)	
	$= 391 \text{ S cm}^2 \text{ mol}^{-1}$	1
	1	1
	$\alpha = \frac{-m}{A^0}$	
	I_m	1/2
	48.1	
	= 391	
	= 0.123	
	- 0.125	1/2
24	(a) Because Mn ²⁺ is more stable due to stable 3d ⁵ configuration whereas Cr ³⁺ is more stable	1
	due to stable t_{2g}^3 configuration.	
	(b) Similar atomic radii of 4d and 5d series elements	1/ 1/
	Separation of lanthanoids becomes difficult. (Or any other correct consequences)	1/2, 1/2
	(c) Zinc, due to weak interatomic interactions / Weak metallic bond.	1/2 , 1/2
25	(a) Dichloridobis(ethane-1,2-diamine) iron(III) ion	1
	(b) Tetraammineaquabromidocobalt(III) sulphate	1
	(c) Tetracyanidonickelate(II) ion	1
26.	(A)	
	(a) The carbonyl group of aldehydes and ketones is reduced to CH ₂ group on treatment with	1/
	hydrazine followed by heating with sodium or potassium hydroxide in high boiling solvent such as ethylene glycol	1/2
	$C=O \xrightarrow{NH_2NH_2} C=NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1/2
	(b) Chromyl chloride oxidises methyl group of toluene to a chromium complex, which on hydrolysis gives corresponding benzaldehyde.	1/2
	$ \begin{array}{c} \begin{array}{c} \text{CH}_{3} \\ \hline 2.\text{H}_{3}\text{O}^{+}, \Delta \end{array} $	1/2

	(c) Aldehydes which do not have α-hydrogen atom, undergo self-oxidation and reduction reaction on heating with concentrated alkali gives salt of carboxylic acid and alcohol	1/2
	2 CHO + Conc. NaOH $\xrightarrow{\Delta}$ CH ₂ OH + COONa	1/2
	(Or any other example)	
	OR	
26	(B)	
	(a) $A = CH_3COCI$ (b) CH_3CHO (c) $CH_3CH=NNH_2$	½ x 3
	(b) $A = CH_3CHO$ (b) $CH_3CH(OH)CH_2CHO$ (c) $CH_3CH=CHCHO$	½ x 3
27	 (a) (i) The stereoisomers related to each other as non-superimposable mirror images. (ii) A mixture containing dextro and laevo enantiomers in equal proportions. (b) C—Cl bond acquires a partial double bond character due to resonance / the carbon atom of benzene attached to halogen is sp²-hybridised / Explanation through resonating structures. 	1 1 1
28	(a)	
	$\begin{array}{ccc} \text{CHO} & \text{CH=N-OH} \\ \text{(CHOH)}_4 & \xrightarrow{\text{NH}_2\text{OH}} & \text{(CHOH)}_4 \\ \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \end{array}$	1
	(b) Due to the presence of zwitter ion structure it can react with acids and bases./ Due to the	
	presence of both carboxylic group and amino group.	1
	(c) It is water soluble vitamin and is excreted in urine.	1
	SECTION D	
29	(a)	
	CH_3 CH_3 NO_2	2
	/ Award full marks if attempted because of	
	printing error. (b) Due to resonance in aniline the lone pair of electrons are less available while they are easily available in methyl amine. (c) (i) $NH_3 < (CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$	1
	OR (ii) A mixture of primary, secondary and tertiary amines and also a quaternary ammonium salt is formed.	1
30	When external pressure is larger than the osmotic pressure, then the movement of solvent is from solution to solvent side through semi permeable membrane. / The	1
	direction of osmosis can be reversed if a pressure larger than the osmotic pressure is applied to the solution side.	1
	Cellulose acetate / Or any other suitable example. (b) (i) DDC suitable via / Cella suitable and result and results by the and a correction.	1
	(b) (i) RBC swells up / Cells swell and may even burst due to endo-osmosis. OR	1
	(ii) 1 M KCl,	1/2
	i = 2 / KCl dissociates into ions, whereas urea does not dissociate.	1/2
	(c) It depends upon the number of solute particles in the solution.	1
	SECTION E	
31	(A) A = CH ₃ CH ₂ OH / Ethanol / Ethyl alcohol,	½ x 5
	B = CH₃CHO / Ethanal / Acetaldehyde,	

		1
	C = CHI ₃ / Iodoform / Triiodomethane,	
	$D = CH_3CH_2O CH_2 CH_3$ / Ethoxyethane / Diethyl ether,	
	$E = CH_3CH_2I$ / Ethyl iodide / Iodoethane.	
	CrO ₃ CH CHO NaOH + I ₂ CHI	
	$CH_3CH_2OH \xrightarrow{CrO_3} CH_3CHO \xrightarrow{NaOH+1_2} CHI_3$	
	$CH_3CH_2OH \longrightarrow CH_3CHO \longrightarrow CHI_3$	
	'A' 'B' 'C'	
	A D	
	U 60	½ x 5
	conc. H ₂ SO ₄ 413 K	
	413 K	
	7125 K	
	HI (excess)	
	$CH_3CH_2OCH_2CH_3 \xrightarrow{HI (excess)} CH_3CH_2I$	
	5 2 2 5	
	'D' 'E'	
	OR	
31	(B) (a)	
	(i)	
	OH OH	
	O ₂ N NO ₂	1
	Conc. HNO ₃	
	NO ₂	
	(ii)	
	(011 011 011)	
	$3 \text{ CH}_3\text{-CH=CH}_2 + (\text{H-BH}_2)_2 \longrightarrow (\text{CH}_3\text{-CH}_2\text{-CH}_2)_3 \text{B}$	
	H₂O J3H₂O₂, ŌH	1
	*	_
	3CH ₃ -CH ₂ -CH ₂ -OH	
	(iii)	
	CII	
	CH ₃	
	CH_3	1
	CH. CH.	1
	(b) On heating with NaOH + I ₂ , Butan-2-ol gives yellow ppt. Of iodoform (CHI ₃) whereas Butan-1-	1
	ol does not.	1
	(Or any other suitable chemical test)	1
	(c) Ethanol < Water < Phenol.	1
32	(a) But-2-enal	1
	(b) On heating with NaOH + I ₂ , propanone gives yellow ppt. Of iodoform (CHI ₃) whereas	
		1
	propanal does not. (Or any other suitable chemical test)	
	(c)	
	(i)	
		1
	COOK COOH	_
	$\begin{array}{c} & & \text{KMnO}_{4}\text{-KOH} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	
	Heat	

	(ii)	
	CH ₃ CH ₂ OH PCC CH ₃ CHO $1. CH_3MgBr$ CH ₃ CH(OH)CH ₃ $2. H_3O^+$	1
	(iii)	
	KMnO4/H+ Cl2 , Red Phosphorous	
	CH3CH2CHO CH3CH2COOH CH3CH(CI)-COOH	
	NaOH (aq)	1
	(U	
	CH ₃ —CH—COOH	
	όπ	
	(Or any other correct method)	
32	OR (B)	1 × 5=
-	(a)	5
	N-OH	
	(b)	
	(c)	
	COCI	
	COCI	
	(d)	
	ОН	
	CH—CN	
	СООН	
	(e) CH₃COCI / Anhy. AlCl₃ or (CH₃CO)₂O/ Anhy. AlCl₃	
33	(A)	
	(a) E° _{cell} = E° _{cathode} -E° _{anode}	
	= - 2.87 - 1.5 V	1/
	$= -4.37 \text{ V}$ $\triangle G^0 = - \text{ nF } E^\circ C_{ell}$	1/2 1/2
	= -6 x 96500 X (-4.37)	/-
	= 2530.230 kJ/mol	1
	Reaction is non-spontaneous.	1
	(b) Yes, the tarnish can be removed.	1
	Aluminium has more negative standard electrode potential than silver so will reduce silver	1
	sulphide to silver, tarnish will be removed. /	
	3 Ag ⁺ + Al → 3 Ag + Al ³⁺	
	SAG TAI S SAG TAI	

	= - 0.71 -(-1.66) V	
	= 0.95 V	
	This indicates that the reaction is feasible and tarnish can be removed.	
	OR	
33	(B)	
	(a) (i) Potential difference between two electrodes of a galvanic cell.	1
	(ii) The galvanic cell in which combustion energy of fuels is directly converted into electrical energy.	1
	b)	
	$n = 2$ $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ $= -0.40 - (-0.76) V$	
	= 0.36 V	1
	$E_{Cell} = E^{o}_{celi} - \frac{0.059}{2} \log \left[\frac{Zn^{2+}}{Cd} \right]$	1
	$= [0.36] - \frac{0.059}{2} \log \frac{0.1}{0.01}$	
	$=(0\cdot 36-0\cdot 0295)$	
	= 0·3305 V	1

First 5

अंक्रन भोजना : 2024-25 रसाय क विद्याद (सिद्धांतीक 043 प्रचनपत्र कोड : 56/2/2

MM: 70

Q. No	मूल्यांकन विद्	Mark
	खण्ड क	
1	(D)	1
2	(A)	1
3	(A)	1
4	(D)	1
5	(C)	1
6	(D)	1
7	(D) "	1
8	(C)	1
9	(B)	1
10	(C)	1
11	(A)	1
12	(8)	1
13	(A)	1
14	(C)	1
15	(C)	1
16	(B)	1
	खु प ड खु	
	, अधिक स्मायित्व वाले तृतीयक का बिकिटायन के बनने के कारण (b) 2-ब्रोमो- २ मेधिलष्यूटेन < 2-ब्रोमो पेन्टेन < 1-ब्रोमो पेन्टेन	2 2
18	(i) k[2R] ²	
	all =4 times	1
	(ii) $= k[R/2]^2$	
	41) = 1/4 times	1
19	(A) = Na2CrO4 / साडियम क्रिमेट	
	(B) = Na ₂ Cr ₂ O ₇ / सोडिम्म डाइक्रोमेट	½ x 4
	(C) = K ₂ Cr ₂ O ₇ / पोर्ट रिप्पम डाइको मेट	İ
	(D) = Na ₂ SO ₄ / स्नोडियम सल्फट	
20	(८० (६43) अमें भा की उपस्मिति में अ-इलेक्ट्रॉन के सुरिमत होने पर दे। - व-कहक रिक्त हो जाते हैं जो वंडि सेकरण में सिमिलित हो जाते हैं अतः ओतरिक कक्षक संकुल बनाते हैं।	1
	(N) (NH3) रेने में Ni +2 ऑक्सीकरण अवस्था में टूं तथा उसका विश्व इत्येक्ट्रानिक विन्यास टें। इसमें sp'd श्वेकरण होता है उनतः यह बाह्य कक्षक संकुल बनाता है।	

21		1/
	$k = \frac{[R]_0 - [R]}{t}$	1/2
	t	
	t = 0.10 - 0.075	
	0.0030	1
	t	
	0.0030	
	t = 8.33 s	1/2
	. अध्वा .	
21	$= \frac{-1 \Delta[NH3]}{2 \Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1 \Delta[H2]}{3 \Delta t}$ $= \frac{-1 \Delta[NH3]}{2 \Delta t} = \frac{\Delta[N2]}{\Delta t} = \frac{+1 \Delta[H2]}{3 \Delta t} = k$	1/2
	$\frac{-1\Delta[NH3]}{\Delta[NH3]} = \frac{\Delta[N2]}{\Delta[M2]} = \frac{+1\Delta[H2]}{\Delta[M2]} = k$	×
	$\frac{\Delta t}{\Delta (NZ)} = 2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$	1/3
	$\frac{\Delta[H2]}{\Delta t} = 3 \times 2.5 \times 10^{-4}$ = 7.5 x 10 ⁻⁴ mol L ⁻¹ s ⁻¹	
		1/2
22	ইল্ড ব্	1/2
	$\pi_{\text{Glucose}} = \pi_{\text{Urea}}$ $C_{G} = C_{IJ}$	/2
	$\frac{W_G}{M_G} = \frac{W_U}{M_U}$	1/2
	$\frac{w_G}{180} = \frac{15}{60}$	1
	$W_{G} = \frac{15 \times 180}{60}$	
	= 45 g (इकाई मलट याना देने प्र 1/2 मंककार दें)	1
23	$A_{m(\text{HAc})}^{\circ} = A_{m(\text{HCI})}^{\circ} + A_{m(\text{NaAc})}^{\circ} - A_{m(\text{NaCI})}^{\circ}$.	1
	= (426 + 91 -126)	
	$= 391 \text{ S cm}^2 \text{ mol}^{-1}$	1
	$A_{\cdot \cdot \cdot}$	1
	$\alpha = \frac{3\pi}{4^{\circ}}$	
	n e e e e e e e e e e e e e e e e e e e	1/2
	$=\frac{48.1}{}$	
	391	
	= 0.123	
		1/2
24	(a) क्यों के Mn24 हिमर 305 विन्यास के कारण अधिक स्मायी है जबिक Cr34 के स्थिरत का कारण इसका उनर्धभरित 129	1
	हें जबिक Cr31 के स्थिरती का कारण इसका अर्धभरित 129	1
		1
	के प्रमाण त्रिण्याओं की	1/2
	(b) 4d और sd श्रेणी के धातुओं की परमाणु त्रिज्याओं का	
	लेन्द्रीनायड के पृद्यक्करण में कठिताई	1/2
	लैन्येनायड के प्राक्करण म काठता र	1
	(का श्रम्य कोड सही परिणाम)	
	नि कारण / र	
	(या अन्य कोई सही परिणाम) (८) फ्रिंक, दुर्वल अंतरापरमाण्विक सन्गोन्मक्रम के कारण/दुर्बल धात्विक वंधन	生ノる
	धात्विक वंधन	
		<u> </u>

	•	
25	(a) डाइक्लोरिडोबिस (रुगेन-1,2 -डाइरेगीन) आयरन (111) आयन (b) टेट्रारेम्मीनरक्वा ब्रोमिडो को बाल्ट (111) सल्फेट	
	(C) टेट्रासायनिडोनिकेलेट (II) आयन	1
26.	(A) रिलिडहाइड स्व कीटोनों का कार्बो निल समूह हाइट्रेंज़ीन के साथ अभिक्रिया करने के बाद स्थितीन वृलाइकॉल जैसे उच्च क्वथनांक बाते विलायकू में सीडियम या पोटेंशियम हाइट्रेंक्साइड के साथा गएम करने पर -८भ2 समूह में परिवर्तित हो जाता है।	1/2
	C=0 NH,NH, C=NNH, KOH/स्ष्रितीत्वताइकॉल CH, + N, उद्या (b) क्रीमिल क्लीराइड मे भिल समुह को स्क क्रीमियम संकुल में उनाक्सीकृत कर देता है जो जल उनपद्यत द्वारा संगत	丛丛
	CH3 1.CrO2Cl2, CS2 2.H3O', Δ (c) रेलिडाइड जिनमें ०- हाइड्रोजन परमाणु नहीं होते, सांद्र क्षार की उपस्थित में गरम करने से स्व ओक्सीकृत व अपुथ्यन की अभिक्रिया से कार्बा किसलिक अमल की लवण और रिल्कोडील देता हैं।	7 7
	2 CHO + Conc. NaOH → CH₂OH + COONa (या कोई अन्य उदाहरण)	7

	अथवा	
26	(B)	
	(a) $A = CH_3COCI$ (b) CH_3CHO (c) $CH_3CH=NNH_2$	½ x 3
27	(b) A = CH₃CHO (b) CH₃CH(OH)CH₂CHO (c) CH₃CH=CHCHO	½ x 3
21	(अ) त्रिविम स्मावस्वियों का सेर्वाध्य प्रस्पृ अध्यारोपित न हो सकने वाले दर्पण प्रतिविवों की तरह हाता है, उन्हें प्रतिविव रूप कहते हैं।	
	म हो सकने वाले वर्पण प्रतिविकों की तरह होता है उन्हें प्रतिविक	
	न्हप कहते हैं।	
	(1) मिल्रण जिसमें प्रतिविंव रूपों के विक्रण ध्रुवण ध्रुविक और	
	वाम ध्रुवण धुणिक समान अनुपति में उपस्थित हो।	1
	वाम ह्युवण हुणक समान अनुनात म जनास्यत छ ।	
	A Air	
	(b) उननाद के कारण (- ८। आबंध में ओशिक दिबंध के गुण आने के कारण / बेन्जीन का कार्बन परमाणु जी हैलीजन से जुड़ा है, 51° संकरित होता है / अनुनादी	
	के गुण आने के कारण विन्जीत का कार्बत परमाण जी	1
1	हैलीजन से जड़ा है sp2 संकरित होता है / अनुनारी	1
	संरचनाओं के द्वारा ट्याख्या	
	स्रियनाजा क द्वारा त्या स्था	
28	(a)	
	CHO CH=N-OH	
	$(CHOH)_4 \xrightarrow{NH,OH} (CHOH)_4$	1
	CH ₂ OH CH ₂ OH	
}	(1) रक्षामिका सम्मिक राम स्थापिकात होने केकाएण	
	(b) उभयाविष्ट आय्निक रूप में उपस्थित होने के कारण वे अम्लो रूवं क्षारको बोनो के साथ अभिक्रिया करते हैं।	
:	व असम स्व दारका वाना कराय आभाक्रया करत है।	,
	कार्वे क्सिल समूह तथा रेमीनो समूह की अस्थित के	
	कारण।	
	(c) यह जल में विलेय विटामिन होता देओं यह मूत्र	
	(८) यह जलम विलय विद्यालन हाटा टजार यह सूत्र	ı
	के साध उत्सर्जित हो जात। है	
	,	
	ইৰ্ড হ ে	
29	(a)	
	NO_2 NH_2 NH_2	
		2
		_
	एमः No. /मुद्रण त्रुटि के क्रारण प्रयास करने पर पूर्ण अंक दिस्ट जासे।	İ
	ं तर तैं। अभ दिन सिन्।	

	(b) रेनिलीन में अनुनाद के कारण असहभाजित इलेक्ट्रॉन युगल कम उपलब्ध होता है जबकि मेभिलरेमीन में बह आसानी से उपलब्ध होते हैं।	
	(C)(1) NH3 < (CH3)3N < CH3NH2 < (CH3)2NH	
	अथवा	
	(ii) प्राथमिक, द्वितीयक रखं तृतीयक रेमीन तथा यतुष्क अमोनियम त्वण का भित्रण प्राप्त होता है।	
30		
30	(a) जब बाह्य दाव प्रासरण दाब से अधिक होता है तो विलायक अर्धपारमम्म झिल्ली के माध्यम से बिलयन में से विलायक में पारममन करता हैं / विलयन पर परासरण दाब से अधिक दाब लगाकर परासरण की दिशा की प्रतिवर्ति किया जा	1
	स्कता है। स्तिलीस रेसीटेट (अथवा कोई उपयुक्त उदाहरण)	1
	(b)(i) रूधिर कोशिका फूल जाती हैं/कोशिकार फूल जाती हैं और अंत:परासरण के कारण फर भी सकती हैं।	
	अथवा	
	(ii) IM KCL i=2/KCL आधनों में वियोजित हो जाता है जबिक यूरिया वियोजित नहीं होता।	为
	(c) यह विलयन में विलय कणों की संख्या पर निर्भर करता है।	1
	40 A CHICH OH / TO THE TO THE TOTAL OF THE T	1/ v E
31	(A) A = CH ₃ CH ₂ OH/रूभेनॉल / रूभिल क्लोहॉल B = CH ₃ CHO / रेभेनेल / रेसी टेल्डिहाइड C = CH ₃ / आयो डोफार्स / ट्राईआयोडो मेमेन D = CH ₃ CH ₂ O CH ₂ CH ₃ रू आ क्सीर् थ्येन / डाइर्थिल इंगर	½ x 5
	To answer and A Think and A Control of the Control	

	E-CHCHI / TA	
	E = CH3CH21 / स्थान आयो डाइड / आयो डोस्थेन	
	CrO ₃ NaOH + I ₂	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	'A' 'B' 'C'	
	conc. H ₂ SO ₄	½ x 5
	conc. H ₂ SO ₄ 413 K	
	CH ₃ CH ₂ OCH ₂ CH ₃ HI (新紀報) CH ₃ CH ₂ I	
	3 2 2 3 3 2 'D' 'F'	
31	अध्या	
31	(B) (a) (i)	
	ÓH- OH	
	Conc. HNO ₃ O ₂ N NO ₂	,
	NO.	1
	(ii)	
	$3 \text{ CH}_3\text{-CH=CH}_2 + (\text{H-BH}_2)_2 \longrightarrow (\text{CH}_3\text{-CH}_2\text{-CH}_2)_3 \text{B}$	
	H₂O J3H₂Q₂, ŌH	
	3CH ₃ -CH ₂ -CH ₂ -OH	ļ ·
	(iii)	
	CH ₃ CH ₃	•
	$CH_3 - \overset{-}{C} - \overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset$	
	ch, ch, ch, ch, on the superior of the ch, ch, ch, ch, ch, ch, ch, ch, ch, ch,	
	(b) ध्यूरेन - 2 - ऑल को NaOH+12 के साध अमें करने पर पाल	1
	या का अवसप (CHI3)प्राप्त होता ह जबान ब्यूटन-1-आल	
	नहीं देता ।	
		1
	७ रूभेनॉल ८ जल ८ फीनॉल	'
32	(a) ध्यूट-2- ईनल	
J.	a) 840 - 2- 37M	1
	(b) प्रोपनोन को NaOH+I) के साम ग्रम करने पर पीले रंग	1
	का अवक्षेप प्राप्त होता है जबकि प्रोपनेल नहीं देता।	
	रिप कोर्ट यत्य उपयक्त स्वामायनिक	
:	(या कोई अन्य उपयुक्त स्वसायनिक परीक्षण)	

	(c)	
	(i) ·	
	\	
	COOK COOH	
	KMnO ₄ -KOH H ₃ O'	
	3411	
	(::)	
		,
	CH_3CH_2OH PCC CH_3CHO 1. CH_3MgBr $CH_3CH(OH)CH_3$	1
	2. H₃O ⁺	
	(iii) KMn04/H+ CH3CH2CHO CH3CH2COOH CH3CH(CD-COOH	
	Chich(c)-Coon	•
	NaOH (aq)	
	cH,—CH—coot (या कोई अन्य उपयुक्त विधि)	
	OII	
	अथवाँ	
32	(B)	1 × 5=
	(a)	- 5
	N-OH	
		}
	(b)	
	(c)	
}	coci	
	l dans	
	coci	
	(d) ·	
	ОН	
	CH—CN	
	СООН	
	(e) CH ₃ COCI / Anhy. AlCl ₃ or (CH ₃ CO) ₂ O/ Anhy. AlCl ₃	
33	(A) (a) E° _{cell} = E° _{cathode} -E° _{anode}	
	(a) $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ = -2.87 -1.5 V	1
	= -4.37 V	1/2
	$\triangle G^0 = - \text{ nF } E^0 c_{ell}$	12
	= -6 x 96500 X (-4.37)	_
	= 2530.230 kJ/mol	ŧ
	अभिक्रिया स्वतः अप्रवर्तित है।	

	(b) हीं, मिलन्सा को हटाया जा सकता है। इत्युमीनियम का मानक इलैंक्ट्रोड विभव याँवी से अधिक ऋणात्मक होता है अतः Ag2s को याँवी में अपचित्र किया जा सकता है, मिलन्ता को हटाया जा सकता है	•
	3 Ag+ Al → 3 Ag + Al3+ E°C _{ell} = E° _{cathode} -E° _{anode} =-0.71 -(-1.66) V = 0.95 V 21€ दशाता है कि अभिक्रिया स्मित है और मालितता की हताया जा सकता है।	,
33	अध्वा (B) (OXI) गैल्वेनी सेल के बोनों इलेंक्ट्रोडों के बीच विभवांतर (11) गैल्वेनी सेल जिसमें ईधनों की दहन ऊर्जा को सीधे ही विद्युत उर्जा में परिवर्तित किया जाता है।	1
	b) $n = 2$ $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ $= -0.40 - (-0.76) \text{ V}$ $= 0.36 \text{ V}$ $E_{Cell} = E^{\circ}_{cell} - \frac{0.059}{2} \log \left[\frac{Zn^{2+}}{Cd^{-2+}} \right]$ $= [0.36] - \frac{0.059}{2} \log \frac{0.1}{0.01}$	1
	= (0·36-0·0295) = 0·3305 V (इकाई गलत या ना देने पर 1/2 मंककाटेंद्र)	j