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:

: 
(i) 38 

(ii)  

(iii) 1 18 19 20 

(iv) 21 25 (VSA)

(v) 26 31 (SA)

(vi) 32 35 (LA)

(vii) 36 38 

(viii) 2 3 
2 2 

(ix) 

IÊS> H$ 

1 

1. dx2 2x  ~am~a h¡ : 

(a) 2x+2 + C (b) 2x+2 log 2 + C 

(c) C
2log

2 2x
 (d) C

2log
2

2
x

·  

2. _mZm A EH$ H$mo{Q> 3 H$m {df_-g_{_V Amì ỳh h¡ & `{X A  = x h¡, Vmo (2023)x ~am~a 

h¡ : 

(a) 2023  (b) 
2023

1
 

(c) (2023)2 (d) 1 
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General Instructions :  
Read the following instructions very carefully and strictly follow them : 

(i) This question paper contains 38 questions. All questions are compulsory.  

(ii) This question paper is divided into five Sections  A, B, C, D and E. 

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and 
questions number 19 and 20 are Assertion-Reason based questions of 1 mark 
each.  

(iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type 
questions, carrying 2 marks each.  

(v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions, 
carrying 3 marks each. 

(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions 
carrying 5 marks each.  

(vii) In Section E, Questions no. 36 to 38 are case study based questions carrying 
4 marks each.   

(viii) There is no overall choice. However, an internal choice has been provided in 
2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 
2 questions in Section E.  

(ix) Use of calculators is not allowed. 

SECTION A 

This section comprises multiple choice questions (MCQs) of 1 mark each.  

1. dx2 2x  is equal to :   

(a) 2x+2 + C (b) 2x+2 log 2 + C 

(c) C
2log

2 2x
 (d) C

2log
2

2
x

·  

2. Let A be a skew-symmetric matrix of order 3. If A  = x, then (2023)x is 

equal to : 

(a) 2023  (b) 
2023

1
 

(c) (2023)2 (d) 1 
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3. dxx4 2
2

0

~am~a h¡ : 

(a) 2 log 2 (b)  2 log 2  

(c) 
2

  (d)  

4. AdH$b g_rH$aU 0y
dy

x
dx  H$m hb h¡ : 

(a) C
y
1

x
1

 (b) log x  log y = C 

(c) xy = C  (d) x + y = C  

5. AdH$b g_rH$aU yycos
dx
dy

ysin
dx

yd 3

2

2
 H$s H$mo{Q> VWm KmV H$m JwUZ\$b 

 h¡ ? 
(a) 3  (b) 2 
(c) 6  (d) n[a^m{fV Zht  

6. q~XþAm| A VWm B Ho$ {ZX}em§H$ H«$_e: (1, 2,  1) VWm (3, 4, 0) h¢, Vmo g{Xe BA  Ho$ 

{XH$²-H$mogmBZ h¢ : 

(a)  2,  2,  1 (b) 
3
1

 ,
3
2

 ,
3
2

 

(c) 2, 2, 1 (d) 
3
1

 ,
3
2

 ,
3
2

 

7. a  VWm b  Eogo Xmo eyÝ`oVa g{Xe h¢ {H$ a  H$m b  na àjon eyÝ` h¡ & a  VWm b  Ho$ 

~rM H$m H$moU h¡ : 

(a) 
2

  (b)  

(c) 
4

  (d) 0 

8.  ABC _|, AB = î  + ĵ  + 2 k̂  VWm AC  = 3 î   ĵ  + 4 k̂  h¢ & `{X  BC H$m 

_Ü`-{~ÝXþ D h¡, Vmo g{Xe AD  ~am~a h¡ : 

(a) 4 î  + 6 k̂  (b) 2 î   2 ĵ  + 2 k̂  

(c) î   ĵ  + k̂  (d) 2 î  + 3 k̂  
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3. dxx4 2
2

0

 equals : 

(a) 2 log 2 (b)  2 log 2  

(c) 
2

  (d)  

4. The solution of the differential equation 0y
dy

x
dx

 is : 

(a) C
y
1

x
1

 (b) log x  log y = C 

(c) xy = C  (d) x + y = C  

5. What is the product of the order and degree of the differential equation 

yycos
dx
dy

ysin
dx

yd 3

2

2
 ? 

(a) 3  (b) 2 
(c) 6  (d) not defined 

6. The direction cosines of vector BA,  where coordinates of A and B are 

(1, 2,  1) and (3, 4, 0) respectively, are : 

(a)  2,  2,  1 (b) 
3
1

 ,
3
2

 ,
3
2

 

(c) 2, 2, 1 (d) 
3
1

 ,
3
2

 ,
3
2

 

7. a  and b  are two non-zero vectors such that the projection of a on b

is 0. The angle between a  and b  is : 

(a) 
2

  (b)  

(c) 
4

  (d) 0 

8. In  ABC, AB = î  + ĵ  + 2 k̂  and AC  = 3 î   ĵ  + 4 k̂ .  If D is mid-point of 

BC, then vector AD  is equal to : 

(a) 4 î  + 6 k̂  (b) 2 î   2 ĵ  + 2 k̂  

(c) î   ĵ  + k̂  (d) 2 î  + 3 k̂  
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9. `{X q~Xþ P(a, b, 0),  aoIm  
4

3z
3

2y
2

1x  na pñWV h¡, Vmo (a, b) h¡ : 

(a) (1, 2) (b) 
3
2

 ,
2
1

 

(c) 
4
1

 ,
2
1

 (d) (0, 0) 

10. Xmo KQ>ZmAm| A VWm B Ho$ {bE, `{X P( A ) = 
2
1

, P( B ) = 
3
2  VWm P(A  B) = 

4
1 h¡, 

Vmo 
B
A

P  ~am~a h¡ : 

(a) 
8
3

  (b) 
9
8

 

(c) 
8
1

  (d) 
4
1

 

11. k H$m dh _mZ {OgHo$ {bE \$bZ 
0xkx,
0x,xxf

2
   x = 0 na AdH$bZr` h¡, h¡ :

(a) 1  (b) 2 

(c) H$moB© ^r dmñV{dH$ g§»`m  (d) 0 

12. `{X 
xsinxcos
xsinxcos

y  h¡, Vmo 
dx
dy  h¡ : 

(a) x
4

sec2  (b) x
4

sec2  

(c) log x
4

sec  (d)  log x
4

sec  

13. a¡{IH$ àmoJ«m_Z g_ñ`m, z = 15x + 30y H$m A{YH$V_rH$aU {ZåZ ì`damoYm| Ho$ A§VJ©V 

H$s{OE : 
 3x + y  12,   x + 2y  10,   x  0,   y  0  

 Ho$ {H$VZo gwg§JV hb h¢ ?  

(a) 1  (b) 2 

(c) 3  (d) Ag§»` 
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9. If the point P(a, b, 0) lies on the line 
4

3z
3

2y
2

1x
, then (a, b) is :

(a) (1, 2) (b) 
3
2

 ,
2
1

 

(c) 
4
1

 ,
2
1

 (d) (0, 0) 

10. For any two events A and B, if P( A ) = 
2
1

, P( B ) = 
3
2

 and P(A  B) = 
4
1

, 

then 
B
A

P  equals : 

(a) 
8
3

  (b) 
9
8

 

(c) 
8
1

  (d) 
4
1

 

11. The value of k for which function 
0xkx,
0x,xxf

2
 is differentiable at 

x = 0 is : 

(a) 1  (b) 2 

(c) any real number  (d) 0 

12. If 
xsinxcos
xsinxcos

y , then 
dx
dy

 is : 

(a) x
4

sec2  (b) x
4

sec2  

(c) log x
4

sec  (d)  log x
4

sec  

13. The number of feasible solutions of the linear programming problem 
given as  

 Maximize z = 15x + 30y subject to constraints :  
 3x + y  12,  x + 2y  10,  x  0, y  0  is  

(a) 1  (b) 2 

(c) 3  (d) infinite  
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14. EH$ a¡{IH$ àmoJ«m_Z g_ñ`m H$m gwg§JV joÌ ZrMo AmaoI _| Xem©`m J`m h¡ : 

  

 {ZåZ _| go H$m¡Z-go ì`damoY gå^d h¢ ? 

(a) x + 2y  4,  x + y  3,  x  0,  y  0   

(b) x + 2y  4,  x + y  3,  x  0,  y  0  

(c) x + 2y  4,  x + y  3,  x  0,  y  0 

(d) x + 2y  4,  x + y  3,  x  0,  y  0 

15. `{X 
00

01
A  VWm 

00

11
  B  h¡, Vmo B A  ~am~a h¡ : 

(a) 
00

11
 

(b) 
01

01
 

(c) 
11

11
 

(d) 
00

00
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14. The feasible region of a linear programming problem is shown in the 
figure below : 

  

 Which of the following are the possible constraints ? 

(a) x + 2y  4,  x + y  3,  x  0,  y  0   

(b) x + 2y  4,  x + y  3,  x  0,  y  0  

(c) x + 2y  4,  x + y  3,  x  0,  y  0 

(d) x + 2y  4,  x + y  3,  x  0,  y  0 

 

15. If 
00
11

  Band
00
01

A , then B A  is equal to : 

(a) 
00

11
 

(b) 
01

01
 

(c) 
11

11
 

(d) 
00

00
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16. `{X A . (adj A) = 

300

030

003

 h¡, Vmo A  + adj A  H$m _mZ ~am~a h¡ : 

(a) 12  (b) 9 

(c) 3  (d) 27 

17. A VWm B XmoZm| g_mZ H$mo{Q> Ho$ {df_-g_{_V Amì ỳh h¢ >& AB g_{_V hmoJm, `{X : 

(a) AB = O (b) AB =  BA 

(c) AB = BA (d) BA = O 

18. 
2

,0x  Ho$ {H$g _mZ Ho$ {bE A + A  = I3  h¡, Ohm± 
xcosxsin

xsinxcos
A h¡ ? 

(a) 
3

  (b) 
6

 

(c) 0  (d) 
2

 

19 20 1 
 (A) (R) 

(a), (b), (c) (d) 

(a) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr 
ì¶m»¶m H$aVm h¡ & 

(b) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢, naÝVw VH©$ (R), A{^H$WZ (A) H$s ghr 
ì¶m»¶m  H$aVm h¡ & 

(c) A{^H$WZ (A) ghr h¡ VWm VH©$ (R) µJbV h¡ & 

(d) A{^H$WZ (A) µJbV h¡ VWm VH©$ (R) ghr h¡ & 

19. (A) : {~ÝXþAm| (4, 7, 8) VWm (2, 3, 4) go hmoH$a OmZo dmbr aoIm, {~ÝXþAm|  

(  1,  2, 1) VWm (1, 2, 5) go hmoH$a OmZo dmbr aoIm Ho$ g_m§Va h¡ &

 (R) : aoImE± r  =  1a  + 1b   VWm r  =  2a  + 2b  nañna g_m§Va h¢ 

`{X 1b  . 2b   = 0 h¡ & 
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16. If A . (adj A) = 

300

030

003

, then the value of A  + adj A  is equal to : 

(a) 12  (b) 9 

(c) 3  (d) 27 

17. A and B are skew-symmetric matrices of same order. AB is symmetric, if :

(a) AB = O (b) AB =  BA 

(c) AB = BA (d) BA = O 

18. For what value of 
2

,0x , is A + A  = I3 , where 

xcosxsin

xsinxcos
A  ? 

(a) 
3

  (b) 
6

 

(c) 0  (d) 
2

 

Questions number 19 and 20 are Assertion and Reason based questions carrying 
1 mark each. Two statements are given, one labelled Assertion (A) and the other 
labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d)
as given below.  

(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the 
correct explanation of the Assertion (A). 

(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not
the correct explanation of the Assertion (A). 

(c) Assertion (A) is true and Reason (R) is false.  
(d) Assertion (A) is false and Reason (R) is true.  

19. Assertion (A) : A line through the points (4, 7, 8) and (2, 3, 4) is parallel 

to a line through the points (  1,  2, 1) and (1, 2, 5).

Reason (R): Lines r  =  1a  + 1b   and r  =  2a  + 2b  are parallel if  

1b  . 2b   = 0. 
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20. (A) : [sin 1 x + 2 cos 1 x] H$m n[aga [0, ] h¡ &

 (R) : sin 1 x H$s _w»` _mZ emIm H$m n[aga 
2

,
2

 h¡ & 

IÊS> I 

(VSA) 2  

21. {ZåZ H$WZ na {dMma H$s{OE : b   H$m H$_-go-H$_ EH$ _mZ Eogm Adí` h¡ {OgHo$ 

{bE x
b

xf , b  0,   {0} _| {Za§Va dY©_mZ h¡ &   

 ~VmBE {H$ `h H$WZ gË` h¡ `m Zht & Am¡{MË` Xr{OE &   

22. (H$) )0(cos
2
3

cos2
2

1
sin3 111  H$m _mZ kmV H$s{OE & 

AWdm 

(I) f(x) = sin 1 x, 
2

1
 ,

2
1

x  H$m AmboI It{ME & Bg \$bZ f(x) H$m 

n[aga ^r {b{IE & 

23. (H$) `{X x
1

xy  h¡, Vmo x = 1 na 
dx
dy

 kmV H$s{OE & 

AWdm 

(I) `{X x = a sin 2t,  y = a(cos 2t + log tan t) h¡, Vmo 
dx
dy  kmV H$s{OE & 

24. `{X r  = 3 î   2 ĵ  + 6 k̂  h¡, Vmo ( r   ĵ ) . ( r   k̂ )  12 H$m _mZ kmV H$s{OE & 

25. p H$m dh _mZ kmV H$s{OE {OgHo$ {bE aoImE± 
4

3z
p3

4y
2
1x  VWm 

7
z1

2
5y

p4
2x  nañna b§~dV h¢ & 
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20. Assertion (A) : Range of [sin 1 x + 2 cos 1 x] is [0, ]. 

Reason (R) : Principal value branch of  sin 1 x  has range 
2

,
2

.

SECTION B 

This section comprises very short answer (VSA) type questions  of 2 marks each.

21. There exists at least one value of b  for 

which x
b

xf , b  0 is strictly increasing in   {0}.   

 State True or False. Justify. 

22. (a) Evaluate : )0(cos
2
3

cos2
2

1
sin3 111  

   OR 

(b) Draw the graph of f(x) = sin 1 x, 
2

1
 ,

2
1

x . Also, write range 

of f(x).   

23. (a) If x
1

xy , then find 
dx
dy

 at x = 1. 

   OR 

(b) If  x = a sin 2t,  y = a(cos 2t + log tan t),  then find 
dx
dy

. 

24. If r  = 3 î   2 ĵ  + 6 k̂ , find the value of ( r   ĵ ) . ( r   k̂ )  12. 

25. Find the value of p, so that lines 
4

3z
p3

4y
2
1x

 and 

7
z1

2
5y

p4
2x

 are perpendicular to each other.  
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IÊS> J 

(SA) 3  

26. kmV H$s{OE : 

 dx
54ee

e
x2x

x
 

27. (H$) kmV H$s{OE : 

 dx
3xsin
xcos

 

                      AWdm 

(I) kmV H$s{OE : 

 )1(xlogx 22  dx 

28. {ZåZ a¡{IH$ àmoJ«m_Z g_ñ`m H$mo AmboI Ûmam hb H$s{OE : 

       ì`damoYm|      x + y  10,  

  x + 3y  60,  

  x  y,  

  x  0, y  0 

 Ho$ A§VJ©V z = 3x + 9y H$m A{YH$V_ _mZ kmV H$s{OE & 

29. (H$) nmgm| Ho$ EH$ ẁ½_ H$mo EH$ gmW CN>mbm J`m & `{X XmoZm| nmgm| na AmB© g§»`mAm| Ho$ 

{Zanoj A§Va H$mo X Ûmam {Zê${nV {H$`m J`m h¡, Vmo X H$m àm{`H$Vm ~§Q>Z kmV 

H$s{OE & 

AWdm 

(I)  
P ({MV) : P (nQ>) = 1 : 3 Ý`mæ` (AZ{^ZV)  

{MV  
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SECTION C 

This section comprises short answer (SA) type questions  of 3 marks each. 

26. Find :  

 dx
54ee

e
x2x

x
 

27. (a) Find : 

 dx
3xsin
xcos

 

   OR 

(b) Find : 

   )1(xlogx 22  dx 

28. Solve the following linear programming problem graphically :   

 Maximize z = 3x + 9y 

 subject to the constraints  

    x + y  10,  

  x + 3y  60,  

            x  y,  

  x  0, y  0. 

29. (a) A pair of dice is thrown simultaneously. If X denotes the absolute 

difference of numbers obtained on the pair of dice, then find the 

probability distribution of X. 

                          OR 

(b) There are two coins. One of them is a biased coin such that  

P (head) : P (tail) is 1 : 3 and the other coin is a fair coin. A coin is 

selected at random and tossed once. If the coin showed head, then 

find the probability that it is a biased coin.  
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30. (H$) AdH$b g_rH$aU )x1(y2)yx(
dx
d 22  H$m ì`mnH$ hb kmV H$s{OE & 

AWdm 

(I) AdH$b g_rH$aU 0
dx
dy

xyex x
y

 H$mo hb H$s{OE & 

31. _mZ kmV H$s{OE : 

 

2/

2/
100100

100

xcosxsin

xsin  dx 

IÊS> K 

(LA) 5  

32. (H$) `{X 

302

120

201

A h¡, Vmo Xem©BE {H$ A3  6A2 + 7A + 2 I = O. 

AWdm 

(I) `{X 
75

23
A  h¡, Vmo A 1 kmV H$s{OE VWm BgHo$ à`moJ go g_rH$aU 

{ZH$m` 3x + 5y = 11, 2x  7y =  3 H$mo hb H$s{OE & 

33. (H$) b H$m dh _mZ kmV H$s{OE {Oggo aoImE± 
4

3z
3

by
2

1x  VWm 

z
2

1y
5

4x  nañna à{VÀN>oXr aoImE± hm| & BZ Xr JB© aoImAm| H$m à{VÀN>oXZ 

{~ÝXþ ^r kmV H$s{OE &  

AWdm 

(I) EH$ g_m§Va MVŵ w©O ABCD {OgHo$ erf© A(4, 7, 8), B(2, 3, 4), C(  1, 2, 1) 

VWm D(1, 2, 5) h¢, H$s g^r ^wOmAm| Ho$ g_rH$aU kmV H$s{OE & AV: {~ÝXþ A go 

CD na S>mbo JE b§~ Ho$ nmX Ho$ {ZX}em§H$ ^r kmV H$s{OE & 

34. {gÕ H$s{OE {H$ \$bZ f : [0, )  [  5, ) Omo {H$ f(x) = 4x2 + 4x 5 Ûmam 
n[a^m{fV h¡, EH¡$H$s VWm AmÀN>mXH$ XmoZm| h¡ &  
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30. (a) Find the general solution of the differential equation : 

   )x1(y2)yx(
dx
d 22  

   OR 

(b) Solve the following differential equation :  

    0
dx
dy

xyex x
y

 

31. Evaluate :  

 

2/

2/
100100

100

xcosxsin

xsin  dx 

SECTION D 
This section comprises long answer (LA) type questions  of 5 marks each. 

32. (a) If 

302

120

201

A , then show that A3  6A2 + 7A + 2 I = O.  

   OR 

(b) If 
75

23
A , then find A 1 and use it to solve the following 

system of equations :  

  3x + 5y = 11,  2x  7y =  3. 

33. (a) Find the value of b so that the lines 
4

3z
3

by
2

1x
 and 

z
2

1y
5

4x
 are intersecting lines. Also, find the point of 

intersection of these given lines.  
                                   OR 

(b) Find the equations of all the sides of the parallelogram ABCD 
whose vertices are A(4, 7, 8), B(2, 3, 4), C(  1,  2, 1) and D(1, 2, 5). 
Also, find the coordinates of the foot of the perpendicular from A to 
CD.  

34. Prove that a function f : [0, )  [  5, ) defined as f(x) = 4x2 + 4x  5 is 
both one-one and onto.  
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35. {X`m h¡ {H$ aoIm y = mx (m  0), dH«$ x2 + y2 = 4 VWm x-Aj Ûmam {Kao àW_ MVwWmªe 

_| joÌ H$m joÌ\$b 
2

 BH$mB© h¡ & g_mH$bZ Ho$ à`moJ go, m H$m _mZ kmV H$s{OE & 

IÊS> L> 

3  4  

àH$aU AÜ``Z  1  

36. ~m[ae Ho$ nmZr H$mo EH$Ì H$aZo Ho$ {bE EH$ J m (Q>¢H$) ImoXZm h¡ & `h Q>¢H$ dJm©H$ma AmYma 
H$m hmoZm Mm{hE VWm BgH$m Am`VZ 250 m3 Mm{hE & ŷ{_ H$m _yë` < 5,000 à{V dJ© 

m nyao Q>¢H$ Ho$ 
{bE `h IM© < 40,000 h2 h¡, Ohm±$ h Q>¢H$ H$s _rQ>am| _| JhamB© h¡ & Q>¢H$ Ho$ dJm©H$ma 
AmYma H$s ŵOm x _rQ>a h¡ &  

  

 

 Cn ẁ©º$ gyMZm Ho$ AmYma na {ZåZ àíZm| Ho$ CÎma Xr{OE :  

(i) Q>¢H$ H$mo ImoXZo H$m Hw$b IM© (C),  x Ho$ nXm| _| kmV H$s{OE & 1

(ii) 
dx
dC  kmV H$s{OE &  1

(iii) (H$) x H$m dh _mZ kmV H$s{OE {OgHo$ {bE IM© C Ý ỳZV_ hmo & 2

 AWdm 
(iii) (I) Om±M H$s{OE {H$ IM© \$bZ C(x), Omo {H$ x Ho$ nXm| _| ì`º$ h¡, dY©_mZ h¡ 

`m Zht, Ohm± x > 0 h¡ & 2

x 

h 

 

 

 

ObJ«hU-joÌ 

§̂S>maU
gw{dYm 

[aMmO© 
gw{dYm 

Zmbr 

Q>¢H$ 
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35. The area of the region bounded by the line y = mx (m  0), the curve 

x2 + y2 = 4 and the x-axis in the first quadrant is 
2

 units. Using 

integration, find the value of m.  

SECTION E 

This section comprises 3 case study based questions of 4 marks each. 

Case Study  1 

36. In order to set up a rain water harvesting system, a tank to collect rain 
water is to be dug. The tank should have a square base and a capacity of 
250 m3. The cost of land is < 5,000 per square metre and cost of digging 

increases with depth and for the whole tank, it is < 40,000 h2, where h is 

the depth of the tank in metres. x is the side of the square base of the 
tank in metres. 

ELEMENTS OF A TYPICAL RAIN WATER HARVESTING SYSTEM   

 
Based on the above information, answer the following questions : 

 (i) Find the total cost C of digging the tank in terms of x.  1

 (ii) Find 
dx
dC

. 1

 (iii) (a) Find the value of x for which cost C is minimum. 2
   OR 
 (iii) (b) Check whether the cost function C(x) expressed in terms of x 

is increasing or not, where x  0. 2

CATCHMENT 

CONDUIT 

TANK 

RECHARGE 
FACILITY 

STORAGE 
FACILITY 

x 

h 

 

 

 



65/3/2 JJJJ Page 20 

àH$aU AÜ``Z  2  

37. AîQ> ŵOmH$ma {àµÁ_, EH$ VrZ {d_mAm| dmbr ~hþ\$bH$ h¡, Omo {H$ Xmo AîQ> ŵOmH$ma AmYmam| 

VWm AmR> Am`VmH$ma \$bH$m| go {Kam h¡ & Bg_| 24 {H$Zmao VWm 16 erf© h¢ & 

 

 

 

 Bg {àµÁ_ H$mo Am`VmH$ma \$bH$m| H$s {Xem _| bw H$m`m J`m VWm ZrMo dmbo \$bH$ (Omo 

ŷ{_ H$mo ñne© H$aVm h¡) na {bIr g§»`m ZmoQ> H$s JB© & _mZm ZrMo AmZo dmbo \$bH$m| H$s 

g§»`m H$mo X go {Zê${nV {H$`m J`m Am¡a {ZåZ gmaUr X H$m àm{`H$Vm ~§Q>Z Xem©Vr h¡ &

X : 1 2 3 4 5 6 7 8 

P(X) : p 2p 2p p 2p p2 2p2 7p2 + p 

Cn ẁ©º$ gyMZm Ho$ AmYma na {ZåZ àíZm| Ho$ CÎma Xr{OE : 

(i) p H$m _mZ kmV H$s{OE & 1

(ii) P(X > 6) kmV H$s{OE & 1

(iii) (H$) P(X = 3m) kmV H$s{OE Ohm± m EH$ àmH¥$V g§»`m h¡ & 2

                                    AWdm 

(iii) (I) _mÜ` E(X) kmV H$s{OE & 2
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Case Study  2 

37. An octagonal prism is a three-dimensional polyhedron bounded by two 

octagonal bases and eight rectangular side faces. It has 24 edges and 

16 vertices.  

 

  

 

The prism is rolled along the rectangular faces and number on the bottom 

face (touching the ground) is noted. Let X denote the number obtained on 

the bottom face and the following table give the probability distribution of 

X. 

X : 1 2 3 4 5 6 7 8 

P(X) : p 2p 2p p 2p p2 2p2 7p2 + p

 Based on the above information, answer the following questions : 

 (i) Find the value of p. 1

 (ii) Find P(X  6). 1

 (iii) (a) Find P(X = 3m), where m is a natural number.  2

   OR 

 (iii) (b) Find the mean E(X). 2
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àH$aU AÜ``Z  3  

38. EH$ dm° mo `h ~m°b EH$ nadb` H$m nW boVr

h¡, Omo {ZåZ g_rH$aU Ûmam àXÎm h¡ : 1t
2

13
t

2
7

th 2 , Ohm± h(t) ~m°b H$s 

{H$gr g_` t (goH§$S> _|) na D±$MmB© h¡, (t  0). 

 

 Cn ẁ©º$ gyMZm Ho$ AmYma na {ZåZ àíZm| Ho$ CÎma Xr{OE :  

(i) h(t) EH$ g§VV \$bZ h¡ ? Am¡{MË` Xr{OE & 2

(ii) dh g_` kmV H$s{OE O~ ~m°b H$s D±$MmB© A{YH$V_ hmo & 2
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Case Study 3

38. A volleyball player serves the ball which takes a parabolic path given by 

the equation 1t
2

13
t

2
7

th 2 , where h(t) is the height of ball at any 

time t (in seconds), (t  0). 

 

Based on the above information, answer the following questions : 

 (i) Is h(t) a continuous function ? Justify.  2

 (ii) Find the time at which the height of the ball is maximum.  2
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SECTION A 

Q1 

Ans 
1 

Q2 

Ans (d) 1 1 

Q3 

Ans 1 

Q4 

Ans 1 

Q5 

Ans (b) 2 1 
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Q. No. Expected Answers/Value Points Marks



Q6 

Ans 1 

Q7 

Ans 1 

Q8 

Ans 1 

Q9 

Ans 1 

Q10 
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Ans One mark should be awarded to everyone who has attempted 

this question. 

1 

Q11 

Ans (d) 0 1 

Q12 

Ans 1 

Q13 

Ans (d) infinite 1 

Q14 

Ans 1 
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Q15 

 

 
Ans 

 

1 

Q16 

 
Ans (a) 12 1 

Q17 

 
Ans 

 
1 

Q18 

 
Ans 

 

1 
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Q19 

Ans 1 

Q20 

Ans 1 

SECTION B 

Q21 

Ans 

The given statement is “True”. 

f (x) = 
2

b

x
−

for b < 0,  f (x) > 0 in (−∞, 0) and (0,∞)

 f(x) is strictly increasing in both these intervals. 

   1 

  ½ 

   ½ 

Q22(a) 

Ans 

(a) Given expression = 
3𝜋

4
+

2𝜋

6
  + 

𝜋

2

= 
19

12



OR 

  1½ 

   ½ 

Q22(b) 

Ans 
(b) 
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Correct graph 

 

Here, the points A, B, C and D are respectively 

(0,
𝜋

4
) , (0, −

𝜋

4
) , (

1

√2
, 0) , (−

1

√2
, 0). 

Range = [– 
𝜋

4
,
𝜋

4
]                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1 

 

    

 

    

     

    1 

Q23(a) 

 
Ans 

(a) y = x1/x 

 ⇒log y = 
1

𝑥
log x   

⇒
1

𝑦
 
dy

dx
 = – 

𝑙𝑜𝑔  𝑥

𝑥2  + 
1

𝑥2   
𝑑𝑦

𝑑𝑥
 = 𝑥

1

𝑥  
(1 – log x)

𝑥2   

 ⇒ (
𝑑𝑦

𝑑𝑥
)𝑥=1= 1  

                                                         OR 

 

 

 

    ½  

 

    1 

 

 

    ½  

 

Q23(b) 

 
Ans 

(b) 
𝑑𝑥

𝑑𝑡
 = 2a cos 2t  

𝑑𝑦

𝑑𝑡
 = 2a(–  sin 2t + 

sec2 t

2 tan t
) = 2a 

𝑐𝑜𝑠2  2t

sin 2t
  

𝑑𝑦

𝑑𝑥
 = cot 2t  

   

    ½  

 

    1 

 

    ½  

Q24 

 
Ans 

(
→
r  × 

^
j ) . (

→
r  × 

^
k ) – 12 = (3

^
k  – 6

^
i ) . (– 3

^
j  – 2

^
i ) – 12  

                                         

 = 12 – 12 = 0  

    

   1
1

2
 

 

    ½  
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Q25 

Ans 

d.r.’s of lines are < – 2, 3p, 4 > and < 4p, 2, – 7 >

As lines are perpendicular 

– 8p + 6p – 28 = 0

 p = – 14 

1 

   ½ 

   ½ 

SECTION C 

Q26 

Ans 

Let ex = t. Then      ex dx = dt

Given integral becomes  

 ∫
𝑑𝑡

√𝑡2 – 4t – 5

= ∫
𝑑𝑡

√(𝑡 – 2)2 – 32

= log  (t – 2) + √𝑡2 – 4t – 5 + C 

= log  ex – 2 + √𝑒2𝑥 – 4e𝑥 – 5 + C

    ½ 

   1 

   1 

   ½ 

Q27(a) 

Ans 

(a)I = ∫
cos  x

3 sin x – 4 sin3 x
 dx 

Let sin x = t ⇒ cos x dx = dt 

I = ∫
dt

3t – 4t3

 = ∫
1

t3(
3

t2
 – 4)

dt 

Let 
3

t2
– 4 = z   – 

6

t3
dt =  dz 

I = – 
1

6
∫

dz

z

   ½ 

   ½ 

    ½ 

    ½ 
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 = – 
1

6
log  z + C  

 = – 
1

6
log  3 cosec2 x – 4 + C 

 

                                                          OR 

 

   ½  

 

   ½  

Q27(b) 

 

 

Ans 

(b)Let I =  x2 log (x2 + 1)dx 

 = log (x2 + 1) . 
  𝑥3

3
 – ∫

2𝑥

𝑥2 + 1
 . 

  𝑥3

3
dx  

 = 
  𝑥3

3
log (x2 + 1) – 

3

2
∫

𝑥4

𝑥2 + 1
dx 

 = 
  𝑥3

3
log (x2 + 1) – 

3

2
∫ (𝑥2 – 1 + 

1

𝑥2 + 1
)dx  

 = 
  𝑥3

3
log (x2 + 1) – 

3

2
[

  𝑥3

3
 – x +  tan–1 x] + C  

 

 

 

 

   1 

 

 

    ½  

 

 

    ½  

 

     1 

 

Q28 

 

 

Ans 

Correct graph   

 

 

   2 
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Corner points  Value of Z = 3x + 9y 

A(0, 20)        180 → Maximum 

B(0, 10)                                                                                        90 

C(5, 5)                                                                                         60 

D(15, 15)  180 → Maximum  

Maximum lies at every point on the line segment AD. 

 

 

 

 

 

 

 

    

 

 

 

  1 

Q29(a) 

 
Ans 

(a) 

X 0 1 2 3 4 5 1 

P(X) 
6

36
 

10

36
 

8

36
 

6

36
 

4

36
 

2

36
 2 

                                                             OR 

 

 
1 ½  

 

 1 ½  

 

 

Q29(b) 

 
Ans 

(b)E1 = Biased coin is selected ( )1

1

2
P E =  

E2 = Fair coin is selected ( )2

1

2
P E =   

A   = Head appeared on tossing a selected coin . 

1 2

1 1
,

4 2

A A
P P

E E

   
= =   

   
 

By Bayes’ Theorem P(
 𝐸1

𝐴
) = 

𝑃(𝐸1) P(
𝐴

 E1
)

𝑃(𝐸1) P(
𝐴

 E1
) + P(𝐸2) P(

𝐴

 E2
)
 

= 

1

2
.
1

4
1

2
 . 

1

4
 + 

1

2
 . 

1

2

  

  = 
1

3
 

 

 

 

     ½  

 

     

 

   

 

 

    1 

 

 

 

 

 

 

1 

 
   ½  
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Q30(a) 

Ans 

(a) Given differential equation is

2xy
𝑑𝑦

𝑑𝑥
 + y2 = 2y(1 + x2)


𝑑𝑦

𝑑𝑥
 + 

𝑦

2𝑥
= 

1

𝑥
+ x

Integrating factor = 𝑒∫
1

2𝑥
𝑑𝑥

= 𝑒𝑙𝑜𝑔  √𝑥 = √𝑥

Solution is given by  y√𝑥 = ∫ (
1

√𝑥
+ x

3

2)dx

y√𝑥 = 2√𝑥 + 
2𝑥

5
2

5
+ C ,or y = 2 + 

2𝑥2

5
 + 

𝐶

√𝑥

OR 

   ½ 

   1 

   1 

 ½ 

Q30(b) 

Ans 
(b) Given differential equation is 

𝑑𝑦

𝑑𝑥
= 

𝑦

𝑥
– 𝑒

𝑦

𝑥

Let y = vx   
𝑑𝑦

𝑑𝑥
= v + x

𝑑𝑣

𝑑𝑥

The given equation becomes v + x
𝑑𝑣

𝑑𝑥
= v – ev

– e–vdv = 
𝑑𝑥

𝑥

Integrating both sides, we get 

e–v = log x + C

𝑒–
𝑦

𝑥 = log x + C 

   ½ 

   ½ 

   ½ 

    1 

    ½ 

Q31 

Ans 

I = ∫
𝑠𝑖𝑛100  x

sin100 x + cos100 x

𝜋/2

–𝜋/2
dx 

I = 2∫
𝑠𝑖𝑛100  x

sin100 x + cos100 x

𝜋/2

0
dx       as f(x) = 

𝑠𝑖𝑛100  x

sin100 x + cos100 x
 is even 

I = 2∫
𝑐𝑜𝑠100  x

cos100 x + sin100 x

𝜋/2

0
dx        using ∫ 𝑓(𝑥)

𝑎

0
dx = ∫ 𝑓(𝑎 − 𝑥)

𝑎

0
dx 

2I = 2∫
𝑠𝑖𝑛100  x + cos100 x

𝑐𝑜𝑠100  x + sin100 x

𝜋/2

0
dx = 2∫ 𝑑𝑥

𝜋/2

0
 

I = x|0
π/2

 I = 
π

2

   ½ 

   1 

   ½ 
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SECTION D 

Q32(a) 

Ans 

(a) getting, A2 = [
5 0 8
2 4 5
8 0 13

] 

getting, A3 = [
21 0 34
12 8 23
34 0 55

] 

 A3 – 6A2 + 7A + 2I =

[
21 0 34
12 8 23
34 0 55

] – [
30 0 48
12 24 30
48 0 78

] + [
7 0 14
0 14 7
14 0 21

] + [
2 0 0
0 2 0
0 0 2

] 

= [
0 0 0
0 0 0
0 0 0

]= O 

OR 

1
1

2

1
1

2

   1 

   1 

Q32(b) 

Ans 

(b)adj A = [
– 7 – 2
– 5    3

] 

 A = – 31 

A–1 = 
–1

31
[
– 7 – 2
– 5    3

] 

Given system of equations is 








7–2

5 3
[
𝑥
𝑦] = [

  11
– 3

] 

which is AX = B, where 𝑋 = [
𝑥
𝑦] , 𝐵 = [

  11
–3

] 

⇒X = (A)–1B

⇒X = (A–1)B

=
–1

31 








3   2–

5–7–
[
  11
–3

] = [
2
1
] 

 x = 2,   y = 1 

   1 

    1 

    ½ 

  ½ 

   ½ 

   ½ 

    1 
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Q33(a) 

Ans 

(a)As lines are intersecting, (𝑎2⃗⃗⃗⃗ − 𝑎1⃗⃗⃗⃗ ). ((𝑏1
⃗⃗  ⃗ × 𝑏2

⃗⃗⃗⃗ ) = 0

⇒ |
3 1 – b –3

2 3    4

5 2    1

| = 0 

 b = 2

Any point on the line 
𝑥 – 1

2
= 

y – 2

3
= 

z – 3

4
 is 

(2 + 1, 3 + 2, 4 + 3),  R  

For the point of intersection, these coordinates  must satisfy 
𝑥 – 4

5
 =

y – 1

2
 =  z 

⇒
2𝜆 + 1 – 4

5
= 

3𝜆 + 2 – 1

2
 = 4 + 3 

  = – 1 

 point of intersection is (– 1, – 1, – 1) 

OR 

    1 

    1 

    1 

    1 

    ½ 

    ½ 

Q33(b) 

Ans 

(b)Equation of the line AB : 
𝑥 – 4

2
= 

y – 7

4
= 

z – 8

4

Equation of the line BC : 
𝑥 – 2

3
= 

y – 3

5
= 

z – 4

3

Equation of the line CD : 
𝑥 + 1

1
= 

y + 2

2
 =  

z – 1

2

Equation of the line DA : 
𝑥 – 4

3
= 

y – 7

5
 =  

z – 8

3

Let P be foot of perpendicular from A to CD. 

 Coordinates of P are ( – 1, 2 – 2, 2 + 1) for some  

   ½ 

 ½ 

 ½ 

   ½ 

   1 
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d.r.’s of AP are ( – 5, 2 – 9, 2 – 7)

since AP⊥CD 

  1( – 5) + 2(2 – 9) + 2(2 – 7) = 0 

 9 = 37      ⇒ = 
37

9

 Coordinates of P are (
28

9
,

56

9
,

83

9
) 

    ½ 

 ½ 

 ½ 

   ½ 

Q34 

Ans 
Let 𝑥1, 𝑥2 ∈ [0,∞) such that f(x1) = f(x2) 

Then this ⇒ 4𝑥1
2 + 4x1 – 5 = 4𝑥2

2 + 4x2 – 5

 (x1 + x2) (x1 – x2) + (x1 – x2) = 0 

⇒ (𝑥1 –  𝑥2)[(𝑥1 +  𝑥2) + 1] = 0

⇒(x1 – x2) = 0  or  x1 + x2 = – 1, which is rejected as x1, x2  0 

⇒ x1 = x2

 f is one-one. 

Let 𝑓(𝑥) = 𝑦 ⇒ y = 4x2 + 4x – 5 for  )0,x   

 4x2 + 4x – 5 – y = 0

 x = 
– 4 ± √16 – 16(– 5 – y)

8
⇒ x = 

– 4 + 4√6 + y

8
=

– 1 + √6 + y

2

Since, 𝑥 ≥ 0, we have y + 6  1⇒ 𝑦 ∈ [−5,∞)    

 Range = Codomain =[−5,∞) 
Hence f is onto.  

2
1

2

2
1

2

Q35 

Ans 

Correct figure :    1 

MS_XII_Mathematics_041_65/3/2_2022-23 Page 15



x2 + y2 = 4 and y = mx

x2 + m2x2 = 4   x =
2

√1 + m2

x- coordinate of the required point of intersection is
2

√1 + m2
. 

According to question, 

∫ 𝑚𝑥 𝑑𝑥

2

√1 + 𝑚2

0
 + ∫ √4 – 𝑥22

2

√1 + m2

dx = 
𝜋

2



2m 1

2

0

2

2

x
m

+
+ 

𝑥

2
√4 – 𝑥2  +  2 𝑠𝑖𝑛–1  

𝑥

2
| 2

√1 + m2

2

= 
𝜋

2


2𝑚

1 + m2
+ 𝜋 –

2m

1 + m2
– 2 sin–1 1

√1 + m2
= 

𝜋

2

 
𝜋

4
 =  sin–1  

1

√1 + m2

 
  1

√2
 =  

1

√1 + m2
 m2 + 1 = 2

  m = 1 (as m > 0) 

    1 

  1+1 

    ½ 

 ½   
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SECTION E 

Q36 

Ans(i) 

(i)C = 40000h2 + 5000x2

as x2h = 250

C = 
40000 (250)2 

𝑥4 + 5000x2

    ½ 

    ½ 

Ans(ii) (ii) 
dC

dx
= 

– 160000 (250)2

x5 + 10000x
   1 

Ans(iii) 

(iii)(a)For minimum cost 
𝑑𝐶

𝑑𝑥
 = 0 

 10000x6 = 250 ×250 × 160000

⇒ x = 10

showing 
𝑑2𝐶

 𝑑𝑥2 > 0 at x = 10

 cost is minimum when x = 10 

 ½ 

    1 

 ½ 
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OR 

Ans(iii) 

(iii)(b)
𝑑𝐶

𝑑𝑥
= 

– 160000 (250)2

𝑥4
+ 10000x

𝑑𝐶

𝑑𝑥
 = 0   gives x = 10 

𝑑𝐶

𝑑𝑥
> 0 in (10,∞) and

dx

dC
< 0 in (0, 10). 

Hence, cost function is neither increasing nor decreasing for x > 0 

    ½ 

 1 

    ½ 

Q37 
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Ans(i) 

(i)10p2 + 9p = 1

⇒p = 
1

10

   ½ 

   ½ 

Ans(ii) 

(ii)P(X > 6) = 9p2 + p

= 
9

100
 + 

1

10

= 
19

100

   ½ 

   ½ 

Ans(iii) 

(iii)(a)P(X = 3 m) = P(3) + P(6) 

⇒2p + p2 = 
21

100

1 

1 

OR 

Ans(iii) 

(iii)(b) 

E(X) = XP(X) = p + 4p + 6p + 4p + 10p+ 6p2 + 14p2 + 56p2+8p

= 33p + 76p2

= 
406

100
or 

203

50

     1 

     ½ 

     ½ 
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Q38 

 
Ans(i) 

(i)h(t) = – 
7

2
𝑡2  +  

13

2
𝑡 +  1 

Clearly h(t) is a polynomial function, hence continuous. 

Hence h(t) is a continuous function. 

 

 

 

 

 

   2 

Ans(ii) 

(ii)For maximum height , 

 
𝑑ℎ

𝑑𝑡
 = 0  – 7t + 

13

2
 = 0  

 t = 
13

14
 

𝑑2ℎ

𝑑𝑡2  = – 7 < 0    height is maximum at t = 
13

14
      

 

 

  

   

   1 

 
   ½  

 
   ½  
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